Skip to main content

Air Phytoremediation

  • Chapter
  • First Online:
Phytoremediation

Abstract

Air pollution presently is a challenge fo-r many areas of the world. Plants are higher organisms that can best deal with this problem despite the fact often in the air is a mixture of pollutants of different origin and toxicity. The world of plants is very diverse and well adopted to changes in the environment, including air. This large biodiversity allowed to select species with a very high tolerance, which are the base for the discipline known as phytoremediation. All plants during their presence in the environment run the process of phytoremediation, but some species tolerate a very high concentration of selected pollutants. Moreover, they are able to uptake/accumulate and next to degrade/detoxify in order to make them less harmful. Tolerant plant species can be found in very extreme conditions but for phytoremediation are useful plant species which besides being cultivatable, produce a large leaf area and biomass. Urban areas often contribute in creating high polluted sites as street canyons, road crossing, bus stops, and surrounding of heavy traffic freeway. In all these places, air pollution can be mitigated by the presence of selected plant species. Additionally, agronomic practices allow to maintain them on a polluted site and to form them in configuration for optimal deposition of pollutants. Air phytoremediation in urban areas, where at present men spend most of the time, is strongly desired and hard to overestimate if environment and human health and well-being are the prospect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lewis SL, Maslin MA (2015) Defining the Anthropocene. Nature 519:171–180

    Article  CAS  PubMed  Google Scholar 

  2. WHO (2015) Reducing global health risks through mitigation of short-lived climate pollutants. Report for Policy-makers

    Google Scholar 

  3. Kampa M, Castanas E (2008) Human health effects of air pollution. Environ Pollut 151:362–367

    Article  CAS  PubMed  Google Scholar 

  4. Lafontaine S, Schrlau J, Butler J, Jia Y, Harper B, Harris S, Bramer LM, Waters KM, Harding A, Simonich SLM (2015) Relative influence of trans-pacific and regional atmospheric of PAHS in the Pacific Northwest, USA. Environ Sci Technol 49(23):13807–13816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Karagulian F, Belis CA, Dora CFC, Pruss-Ustun AM, Bonjour S, Adair-Rohani H, Amann M (2015) Contribution to cities ambient particulate matter (PM): a systematic review of local source contributions at global level. Atmos Environ 120:475–483

    Article  CAS  Google Scholar 

  6. Grigoratos T, Martini G (2015) Brake wear particles emissions: a review. Environ Sci Pollut Res Int 22:2491–2504

    Article  CAS  PubMed  Google Scholar 

  7. Bamford HA, Baker JE (2003) Nitro-polycyclic aromatic hydrocarbon concentrations and sources in urban and suburban atmospheres of the Mid-Atlantic region. Atmos Environ 37:2077–2091

    Article  CAS  Google Scholar 

  8. Ohura T, Kitazawa A, Amagai T, Makino M (2005) Occurrence, profiles, and photostabilities of chlorinated polycyclic aromatic hydrocarbons associated with particulates in urban air. Environ Sci Technol 39(1):85–91

    Article  CAS  PubMed  Google Scholar 

  9. Weyens N, Thij S, Popek R, Witter N, Przybysz A, Espenshade J, Gawronska H, Vangronsveld J, Gawronski SW (2015) The role of plant-microbe interaction and their exploitation for phytoremediation of air pollutants. Int J Mol Sci 16(10):25576–25604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kiruri LW, Kahachatryan L, Dellinger B, Lomnicki S (2014) Effect of copper oxide concentration on the formation and persistency of environmentally persistent free radicals (EPFR) in particulates. Environ Sci Technol 48:2212–2217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gehling W, Dellingier B (2013) Environmentally persistent free radicals and their lifetimes in PM 2.5. Environ Sci Technol 47:8172–8178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen H, Laskin A, Baltrusatis J, Gorski CA, Scherer MM, Grassian VH (2012) Coal fly ash as a source of iron in atmospheric dust. Environ Sci Technol 46:2112–2120

    Article  CAS  PubMed  Google Scholar 

  13. Ito A (2015) Atmospheric processing of combustion aerosols as a source of bioavailable iron. Environ Sci Technol Lett 2:70–75

    Article  CAS  Google Scholar 

  14. Wild E, Dent J, Thomas GO, Jones KC (2006) Visualizing the air-to-leaf transfer and within-leaf movement and distribution of phenanthrene: further studies utilizing two-photon excitation microscopy. Environ Sci Technol 40:907–916

    Article  PubMed  Google Scholar 

  15. Megremi L (2010) Distribution and bioavailability of Cr in central Euboea, Greece. Cent Eur J Geosci 2(2):103–123

    Google Scholar 

  16. Ny MT, Lee BK (2011) Size distribution of airborne particulate matter and associated elements in an urban area an industrial cities in Korea. Aerosol Air Qual Res 11:643–653

    CAS  Google Scholar 

  17. Sæbo A, Hanslin HM, Torp T, Lierhagen S, Gawronska H, Dzierzanowski K, Gawronski S (2015) Chemical composition of vegetation along urbanization gradients in two European cities. Environ Pollut 198:116–125

    Article  PubMed  Google Scholar 

  18. Ramanathan V, Carmichael G (2008) Global and regional climate change due to black carbon. Nat Geosci 1:221–227

    Article  CAS  Google Scholar 

  19. EEA (2013) Status of black carbon monitoring in ambient air in Europe. Technical Report No 18

    Google Scholar 

  20. Jacobson MZ (2012) Control of fossil-fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming. J Geophys Res 107(D19):ACH 16-1–ACH 16-22. doi:10.1029/2001JD001376

    Google Scholar 

  21. Naidoo G, Chirkoot D (2004) The effects of coal dust on photosynthesis performance of the mangrove Avicennia marina in Richards Bay, South Africa. Environ Pollut 127:359–366

    Article  CAS  PubMed  Google Scholar 

  22. Calder WJ, Lifferth G, Moritz MA, SBS C (2010) Physiological effects of smoke exposure on deciduous and conifer tree species. Int J For Res 2010(2010):438930. doi:10.1155/2010/438930

    Google Scholar 

  23. Franze T, Weller MG, Niessner R, Poschl U (2005) Protein nitration by polluted air. Eviron Sci Technol 39:1673–1678

    Article  CAS  Google Scholar 

  24. Gruijthujsen YK, Grieshuber I, Stocklineger A, Tischler U, Fehrenbach T, Weller MG, Vogel L, Vieths S, Poschl U, Duschl A (2006) Nitration enhances the allergenic potential of protein. Int Arch Allergy Immunol 141(3):265–275

    Article  Google Scholar 

  25. Reinmuth-Selzle K, Ackaert C, Kampf CJ, Samonig M, Shiraiwa M, Kofler S, Yang H, Gadermaier G, Brandstetter H, Huber CG, Duschl A, Oostingh J, Poschal U (2014) Nitration of the birch pollen allergen Bet v 1.0101: efficiency and site-selectivity of liquid and gaseous nitrating agents. J Proteome Res 13:1570–1577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lu S, Ren J, Hao X, Liu D, Zung R, Wu MYF, Shinich Y, Wang Q (2014) Characterization of protein expression of Platanus pollen following exposure to gaseous pollutants and vehicle exhaust particles. Aerobiologia 30:281–291

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhao F, Elkelish A, Dumer J, Lindermayer C, Barbro J, Rueff F, Behrendt H, Traidl-Hoffmann C, Holzinger A, Kofler W, Braun P, von Toeme C, Hauck SM, Ernst D, Frank U (2016) Common ragweed (Ambrosia artemisiifolia L.): allergenicity and molecular characterization of pollen after plant exposure to elevated NO2. Plant, Cell Environ 39:147–164

    Article  CAS  Google Scholar 

  28. Bryce M, Drews O, Schenk MF, Menzel A, Estrella N, Weichenmeier I, Smulders MJM, Buters J, Ring J, Gorg A, Behrendt H, Traidl-Hoffmann C (2010) Impact of urbanization on the proteome of birch pollen and its chemotactic activity on human granulocytes. Int Arch Allergy Immunol 151(1):46–55

    Article  CAS  PubMed  Google Scholar 

  29. Morikawa H, Higaki A, Nohno M, Takahashi M, Kamada M, Nakata M, Toyohara G, Okamura Y, Matsui K, Kitani S, Fujita K, Irifune K, Goshima N (1998) More than a 600-fold variation in nitrogen dioxide assimilation among 217 plant taxa. Plant Cell Environ 21:180–190

    Article  Google Scholar 

  30. Takahashi M, Nakagawa M, Sakamoto A, Ohsumi C, Matsbara T, Morikawa H (2005) Atmospheric nitrogen dioxide gas is a plant vitalization signal to increase plant size and contents of cell constituents. New Phytol 168(1):149–154

    Article  CAS  PubMed  Google Scholar 

  31. Bidwel RGS, Bebee GP (1974) Carbon monoxide fixation by plant. Can J Bot 174(8):1841–1847

    Article  Google Scholar 

  32. Mauderly JL, Chow JC (2008) Health effects of organic aerosols. Inhal Toxicol 20(3):257–288

    Article  CAS  PubMed  Google Scholar 

  33. Curtis AJ, Helming D, Baroch C, Daly R, Davis S (2014) Biogenic volatile organic compounds emissions from nine tree species used in an urban tree-planting program. Atmos Environ 95:634–664

    Article  CAS  Google Scholar 

  34. Calfapietra C, Fares S, Manes F, Morani A, Sgrigna G, Loreto F (2013) Role of biogenic volatile organic compounds (BVOC) emitted by urban tree on ozone concentration in cities: a review. Environ Pollut 183:71–80

    Article  CAS  PubMed  Google Scholar 

  35. Taha H (1996) Modeling impacts of increased urban vegetation on ozone air quality in the South Coast Air Basin. Atmos Environ 30(20):3423–3430

    Article  CAS  Google Scholar 

  36. Benjamin MT, Winer AM (1998) Estimating the ozone-forming potential of urban trees and shrubs. Atmos Environ 32(1):53–68

    Article  CAS  Google Scholar 

  37. Karl M, Guenther A, Koble R, Leip A, Seufert G (2009) A new European plant-specific emission inventory of biogenic volatile organic compounds for use in atmospheric transport models. Biogeosciences 6:1059–1087

    Article  CAS  Google Scholar 

  38. Baraldi R, Rapparini F, Facini O, Spano DEI, Duce P (2005) Isoprenoid emissions and physiological activities of Mediterranean macchia vegetation under field conditions. J Med Econ 6(1):3–9

    Google Scholar 

  39. Barck CL (2002) Pollution mitigation and carbon sequestration by an urban forest. Environ Pollut 116:195–200

    Article  Google Scholar 

  40. Farmer A (2002) Effects of particulates. In: Bell JNB, Treshow M (eds) Air pollution and plant life. Wiley, Hoboken, pp 187–199

    Google Scholar 

  41. Popek R, Gawronska H, Wrochna M, Gawronski SW, Sæbo A (2013) Particulate matter on foliage of 13 woody species: deposition on surfaces and phytostabilisation in Waxes-a 3-year study. Int J Phytoremediation 15:245–256

    Article  CAS  PubMed  Google Scholar 

  42. Bakker MI, Vorenhout M, Sijm DTHM, Kolloeeffel C (1999) Dry deposition of atmospheric polycyclic aromatic hydrocarbons in three Plantago species. Environ Toxicol Chem 18:2289–2294

    Article  CAS  Google Scholar 

  43. Pough T, MacKenzie AR, Whyatt JD, Hevitt CN (2012) Effectiveness of green infrastructure for improvement of air quality in urban street canyons. Environ Sci Technol 46:7692–7699

    Article  Google Scholar 

  44. Gawronska H, Bakera B (2015) Phytoremediation of particulate matter from indoor air by Chlorophytum comosum L. plants. Air Qual Atmos Health 8:265–272

    Article  CAS  PubMed  Google Scholar 

  45. Barthlott W, Neinhuis C, Cutler D, Ditsch F, Meusel I, Theisen I, Wilhelmi H (1998) Classification and terminology of plant epicuticular waxes. Bot J Linn Soc 126:237–260

    Article  Google Scholar 

  46. Kaupp H, Blumenstock M, McLachlan MS (2000) Retention and mobility of atmospheric particle-associated organic pollutants PCDD/Fs and PAHs on maize leaves. New Phytol 148(3):473–480

    CAS  Google Scholar 

  47. Jouraeva VA, Johnson DL, Hassett JP, Nowak DJ (2002) Difference in accumulation of PAH andmetals on the leaves of Tilia x euchlora and Pyrus calleryana. Environ Pollut 120(2):331–338

    Article  CAS  PubMed  Google Scholar 

  48. Nawrot B, Dzierzanowski K, Gawronski SW (2011) Accumulation of particulate matter, PAHs and heavy metals in canopy of small-leaved lime. Environ Prot Nat Resour 49:52–60

    Google Scholar 

  49. Wang H, Shi H, Wang Y (2015) Effects of weather, time and pollution level on the amount of particulate matter deposited on the leaves Ligustrum lucidum. Sci World J 2015:935942. doi:10.1155/2015/935942

    Google Scholar 

  50. Dzierzanowski K, Popek R, Gawronska H, Sæbo A, Gawronski SW (2011) Deposition of particulate matter of different size fraction on leaf surfaces and in waxes of urban forest species. Int J Phytoremediation 13:1037–1046

    Article  CAS  PubMed  Google Scholar 

  51. Sæbo A, Popek R, Nawrot B, Hanslin HM, Gawronska H, Gawronski SW (2012) Plant species differences in particulate matter accumulation on leaf surfaces. Sci Total Environ 427-428:347–354

    Article  PubMed  Google Scholar 

  52. Wang H, Shi H, Li Y, Yu Y, Zhang J (2013) Seasonal variation in leaf capturing of particulate matter, surface wettability and micromorphology in urban tree species. Front Environ Sci Eng 7(3):579–588

    Article  Google Scholar 

  53. Sgrigna G, Sæbo A, Gawronski S, Popek R, Calfapietra C (2015) Particulate matter deposition on Quercus ilex leaves in an industrial city of central Italy. Environ Pollut 197:187–194

    Article  CAS  PubMed  Google Scholar 

  54. Przybysz A, Sæbo A, Hanslin HM, Gawronski SW (2014) Accumulation of particulate matter and trace elements on vegetation as affected by pollution level, rainfall and the passage of time. Sci Total Environ 481:360–369

    Article  CAS  PubMed  Google Scholar 

  55. Ottele M, von Bohemen HD, Fraaij ALA (2010) Quantifying the deposition of particulate matter on climber vegetation on living walls. Ecol Eng 36:154–163

    Article  Google Scholar 

  56. Borowski J, Loboda T, Pietkiewicz S (2009) Photosynthetic rates and water efficiencies in three climber species grown in different exposures a urban and suburban sites. Dendrobiology 62:55–61

    CAS  Google Scholar 

  57. Veber F, Kowarik I, Saumel I (2014) Herbaceous plants as filters: immobilization of particulates along urban street corridors. Environ Pollut 186:234–240

    Article  Google Scholar 

  58. Sanchez-Lopez AS, Carrillo-Gonzalez R, Gonzales-Chavez MCA, Rosas-Saito GH (2015) Phytobarriers: plant capture particles containing potentially toxic elements originating from mine tailings in semiarid regions. Environ Pollut 205:33–34

    Article  CAS  PubMed  Google Scholar 

  59. Fuller M, Bai S, Eisinger D, Niemeier D (2009) Practical mitigation measures for diesel particulate matter: near-road vegetation barriers. UC Davies—Caltrans Contract Report. http://www.dot.ca.gov/hq/env/air/research/ucd_aqp/Documents/Mitigation-Measures-Package-Report-5-Micah-v3.pdf

  60. Nowak D, Hirabayashi S, Bodine A, Greenfield E (2014) Tree and forest effects on air quality and human health in the United States. Environ Pollut 193:119–129

    Article  CAS  PubMed  Google Scholar 

  61. Lovasi GS, Quinn JW, Neckerman KM, Perzanowski MS, Rundle A (2008) Children living in areas with more street trees have lower prevalence of asthma. J Epidemiol Community Health 62:647–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Coutts C, Hahn M (2015) Green infrastructure, ecosystem services, and human health. Int J Environ Res Public Health 12(8):9768–9798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. La Farge A (2012) On the high line: exploring America’s most original urban park. Thames & Hudson, New York, p 218

    Google Scholar 

  64. Popek R, Gawronska H, Gawronski SW (2015) The level of particular matter on foliage depends on the distance from the source of emission. Int J Phytoremediation 17:1262–1268

    Article  CAS  PubMed  Google Scholar 

  65. Al-Dabbous A, Kumar P (2014) The influence of roadside vegetation barriers on airborne nanoparticles and pedestrian exposure under varying wind condition. Atmos Environ 90:113–124

    Article  CAS  Google Scholar 

  66. Tong Z, Baldauf RW, Isakov V, Deshmukh P, Zhang KM (2016) Roadside vegetation barrier designs to mitigate near-road air pollution impacts. Sci Total Environ 541:920–927

    Article  CAS  PubMed  Google Scholar 

  67. Janhall S (2015) Review on urban vegetation and particle air pollution—Deposition and dispersion. Atmos Environ 105:130–137

    Article  Google Scholar 

  68. Vos PEJ, Maiheu B, Vankerkom J, Janssen S (2013) Improving local air quality in cities: to tree or not to tree? Environ Pollut 183:113–122

    Article  CAS  PubMed  Google Scholar 

  69. Jin S, Guo J, Wheeler S, Kan L, Che S (2014) Evaluation of impacts of tree on PM2.5 dispersion in urban streets. Atmos Environ 99:277–287

    Article  CAS  Google Scholar 

  70. Pugh TAM, MacKenzie AR, Whyatt JD, Hewitt CN (2012) Effectiveness of green infrastructure for improvement of air quality in urban street canyons. Environ Sci Technol 46:7692–7699

    Article  CAS  PubMed  Google Scholar 

  71. Jeanjean APR, Hinchliffe G, McMullan WA, Monks PS, Leigh RJ (2015) A CFD study on the effectiveness of tree to disperse road traffic emissions at a city scale. Atmos Environ 120:1–14

    Article  CAS  Google Scholar 

  72. Hertel O, Berkowicz R (1989) Modeling pollution from traffic in a street canyon. Evaluation of data and model development. DMU Luft A129. p 77

    Google Scholar 

  73. Berkowicz R, Palmgren F, Hertel O, Vignati E (1996) Using measurements of air pollution in streets for evaluation urban air Quality—meteorological analysis and model calculation. Sci Total Environ 189:259–265

    Article  Google Scholar 

  74. Nowak DJ, Hirabayashi S, Bodine A, Hoehn R (2013) Modelled PM2.5 removal by trees in ten US cities and associated health effects. Environ Pollut 178:395–402

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislaw W. Gawronski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gawronski, S.W., Gawronska, H. (2017). Air Phytoremediation. In: Ansari, A., Gill, S., Gill, R., R. Lanza, G., Newman, L. (eds) Phytoremediation. Springer, Cham. https://doi.org/10.1007/978-3-319-52381-1_19

Download citation

Publish with us

Policies and ethics