Skip to main content

Phytoremediation of Landfill Leachates

  • Chapter
  • First Online:
Phytoremediation

Abstract

Municipal landfill leachate is a complex refractory wastewater which consists of extensive level of organic compounds, ammonia, and heavy metals. Contamination of water by landfill leachate has become a serious environmental concern worldwide due to its adverse impact on human health, aquatic organisms, and agricultural crop production. In recent years, constructed wetland (CW) has received promising attention in the treatment of landfill leachate, because of its cost-effective and eco-friendly nature and simplicity in operation, in addition to higher treatment efficiency. Hence, the present chapter is mainly focused on providing a concise discussion of the CWs and its phytoremediation attributes for the remediation of landfill leachate. Natural wetland plant species and short rotation coppice (SRC) have been introduced to remove contaminants from landfill leachate. Different processes such as phytoextraction, phytodegradation, phytovolatilization, rhizofiltration, phytostabilization, rhizo-redox reactions, sedimentation, adsorption, and complexation involve to remove nutrients (i.e., nitrogen and phosphate), heavy metal(loid)s, biological oxygen demand (BOD), and chemical oxygen demand (COD) to a great extent in CW systems. In addition, well-managed SRC systems save millions of dollars by eliminating the leachate transportation and treatment process which were earlier practiced. Further, there are a number of examples where phytoremediation has failed due to excessive leachate application and lack of management practices. Therefore, it is obvious that successful transfer of phytoremediation technologies from the laboratory to the field is a crucial step in terms of removal efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Trankler J, Visvanathan C, Kuruparan P, Tubtimthai O (2005) Influence of tropical seasonal variations on landfill leachate characteristics—results from lysimeter studies. Waste Manag 25:1013–1020

    Article  CAS  PubMed  Google Scholar 

  2. Wijesekara S, Mayakaduwa SS, Siriwardana A, de Silva N, Basnayake B, Kawamoto K, Vithanage M (2014) Fate and transport of pollutants through a municipal solid waste landfill leachate in Sri Lanka. Environ Earth Sci 72:1707–1719

    CAS  Google Scholar 

  3. Bolan NS, Thangarajan R, Seshadri B, Jena U, Das KC, Wang H, Naidu R (2013) Landfills as a biorefinery to produce biomass and capture biogas. Bioresour Technol 135:578–587

    Article  CAS  PubMed  Google Scholar 

  4. Kim K-R, Owens G (2010) Potential for enhanced phytoremediation of landfills using biosolids—a review. J Environ Manag 91:791–797

    Article  CAS  Google Scholar 

  5. Kjeldsen P, Barlaz MA, Rooker AP, Baun A, Ledin A, Christensen TH (2002) Present and long-term composition of MSW landfill leachate: a review. Crit Rev Environ Sci Technol 32:297–336

    Article  CAS  Google Scholar 

  6. Lamb DT, Venkatraman K, Bolan N, Ashwath N, Choppala G, Naidu R (2014) Phytocapping: an alternative technology for the sustainable management of landfill sites. Crit Rev Environ Sci Technol 44:561–637

    Article  CAS  Google Scholar 

  7. Bogner JE, Spokas KA, Chanton JP (2011) Seasonal greenhouse gas emissions (methane, carbon dioxide, nitrous oxide) from engineered landfills: daily, intermediate, and final California cover soils. J Environ Qual 40:1010–1020

    Article  CAS  PubMed  Google Scholar 

  8. Edil TB (2003) A review of aqueous-phase VOC transport in modern landfill liners. Waste Manag 23:561–571

    Article  CAS  PubMed  Google Scholar 

  9. Pastor J, Hernandez AJ (2012) Heavy metals, salts and organic residues in old solid urban waste landfills and surface waters in their discharge areas: determinants for restoring their impact. J Environ Manag 95:S42–S49

    Article  CAS  Google Scholar 

  10. Salem BZ, Capelli N, Laffray X, Elise G, Ayadi H, Aleya L (2014) Seasonal variation of heavy metals in water, sediment and roach tissues in a landfill draining system pond (Etueffont, France). Ecol Eng 69:25–37

    Article  Google Scholar 

  11. Bolan N, Kunhikrishnan A, Gibbs J (2013) Rhizoreduction of arsenate and chromate in Australian native grass, shrub and tree vegetation. Plant Soil 367:615–625

    Article  CAS  Google Scholar 

  12. Christensen TH, Cossu R (2007) Landfill leachate: an intoduction. In: Christensen TH, Cossu R, Stegmann R (eds) Landfiling of waste: leachate. Taylor & Francis, New York

    Google Scholar 

  13. Wang F, Smith DW, El-Din MG (2003) Application of advanced oxidation methods for landfill leachate treatment—a review. J Environ Eng Sci 2:413–427

    Article  CAS  Google Scholar 

  14. Bu L, Wang K, Zhao Q-L, Wei L-L, Zhang J, Yang J-C (2010) Characterization of dissolved organic matter during landfill leachate treatment by sequencing batch reactor, aeration corrosive cell-Fenton, and granular activated carbon in series. J Hazard Mater 179:1096–1105

    Article  CAS  PubMed  Google Scholar 

  15. Abd El-Salam MM, Abu-Zuid GI (2015) Impact of landfill leachate on the groundwater quality: a case study in Egypt. J Adv Res 6:579–586

    Article  CAS  PubMed  Google Scholar 

  16. Kurniawan TA, W-h L, Chan GYS (2006) Physico-chemical treatments for removal of recalcitrant contaminants from landfill leachate. J Hazard Mater 129:80–100

    Article  CAS  PubMed  Google Scholar 

  17. Maheshi D, Steven VP, Karel VA (2015) Environmental and economic assessment of ‘open waste dump’ mining in Sri Lanka. Resour Conserv Recycl 102:67–79

    Article  Google Scholar 

  18. Christensen TH, Kjeldsen P, Bjerg PL, Jensen DL, Christensen JB, Baun A, Albrechtsen H-J, Heron G (2001) Biogeochemistry of landfill leachate plumes. Appl Geochem 16:659–718

    Article  CAS  Google Scholar 

  19. Mor S, Ravindra K, Dahiya RP, Chandra A (2006) Leachate characterization and assessment of groundwater pollution near municipal solid waste landfill site. Environ Monit Assess 118:435–456

    Article  CAS  PubMed  Google Scholar 

  20. Ludvigsen L, Albrechtsen HJ, Ringelberg DB, Ekelund F, Christensen TH (1999) Distribution and composition of microbial populations in a landfill leachate contaminated aquifer (Grindsted, Denmark). Microb Ecol 37:197–207

    Article  CAS  PubMed  Google Scholar 

  21. Fetter CW (1993) Contaminant Hydrology. Macmillan Publishing Company, New York

    Google Scholar 

  22. Trabelsi I, Sellami I, Dhifallah T, Medhioub K, Bousselmi L, Ghrabi A (2009) Coupling of anoxic and aerobic biological treatment of landfill leachate. Desalination 246:506–513

    Article  CAS  Google Scholar 

  23. Vithanage M, Wijesekara SSRMDHR, Siriwardana AR, Mayakaduwa SS, Ok YS (2014) Management of municipal solid waste landfill leachate: a global environmental issue. In: Malik A, Grohmann E, Akhtar R (eds) Environmental deterioration and human health. Springer, Dordrecht

    Google Scholar 

  24. Chu LM, Cheung KC, Wong MH (1994) Variations in the chemical properties of landfill leachate. Environ Manag 18:105–117

    Article  Google Scholar 

  25. Kumarathilaka P, Wijesekara H, Basnayake BFA, Kawamoto K, Vithanage M (2014) Volatile organic compounds (VOCs) produced from Gohagoda municipal solid waste landfill leachate, Sri Lanka. The 5th international conference on sustainable built environment, Sri Lanka

    Google Scholar 

  26. Asadi M (2008) Investigation of heavy metals concentration in landfill leachate and reduction by different coagulants. The 7th international conference on environmental engineering, Faculty of Environmental Engineering, Vilnius Gediminas Technical University

    Google Scholar 

  27. Barnes KK, Christenson SC, Kolpin DW, Focazio MJ, Furlong ET, Zaugg SD, Meyer MT, Barber LB (2004) Pharmaceuticals and other organic waste water contaminants within a leachate plume downgradient of a municipal landfill. Ground Water Monit Remidiat 24:119–126

    Article  CAS  Google Scholar 

  28. Buszka PM, Yeskis DJ, Kolpin DW, Furlong ET, Zaugg SD, Meyer MT (2009) Waste-indicator and pharmaceutical compounds in landfill-leachate-affected ground water near Elkhart, Indiana, 2000–2002. Bull Environ Contam Toxicol 82:653–659

    Article  CAS  PubMed  Google Scholar 

  29. Florez Menendez JC, Fernandez Sanchez ML, Fernandez Martıinez E, Sanchez Urıia JE, Sanz-Medel A (2004) Static headspace versus head space solid-phase microextraction (HS-SPME) for the determination of volatile organochlorine compounds in landfill leachates by gas chromatography. Talanta 63:809–814

    Article  CAS  PubMed  Google Scholar 

  30. Mayakaduwa S, Siriwardana A, Wijesekara SSRMDHR BB, Vithanage M (2012) Characterization of landfill leachate draining from Gohagoda municipal solid waste open dump site for dissolved organic carbon, nutrients and heavy metals. The 7th Asian Pacific landfill symposium, Indonesia

    Google Scholar 

  31. Renou S, Givaudan JG, Poulain S, Dirassouyan F, Moulin P (2008) Landfill leachate treatment: review and opportunity. J Hazard Mater 150:468–493

    Article  CAS  PubMed  Google Scholar 

  32. Reinhart DR (1996) Full-scale experiences with leachate recirculating landfills: case studies. Waste Manag Res 14:347–365

    Article  CAS  Google Scholar 

  33. Kalcikova G, Pirc ET, Gotvajn AZ (2016) Aerobic and anaerobic biodegradation potential of leachate from old active landfill, Desalin Water Treat 57:8619–8625

    Google Scholar 

  34. Neczaj E, Kacprzak M, Lach J, Okoniewska E (2007) Effect of sonication on combined treatment of landfill leachate and domestic sewage in SBR reactor. Desalination 204:227–233

    Article  CAS  Google Scholar 

  35. Ahmed FN, Lan CQ (2012) Treatment of landfill leachate using membrane bioreactors: a review. Desalination 287:41–54

    Article  CAS  Google Scholar 

  36. Muller GT, Giacobbo A, dos Santos Chiaramonte EA, Rodrigues MAS, Meneguzzi A, Bernardes AM (2015) The effect of sanitary landfill leachate aging on the biological treatment and assessment of photoelectrooxidation as a pre-treatment process. Waste Manag 36:177–183

    Article  CAS  PubMed  Google Scholar 

  37. Foo KY, Hameed BH (2009) An overview of landfill leachate treatment via activated carbon adsorption process. J Hazard Mater 171:54–60

    Article  CAS  PubMed  Google Scholar 

  38. Oh B-T, Lee J-Y, Yoon J (2007) Removal of contaminants in leachate from landfill by waste steel scrap and converter slag. Environ Geochem Health 29:331–336

    Article  PubMed  CAS  Google Scholar 

  39. Kargi F, Pamukoglu MY (2003) Powdered activated carbon added biological treatment of pre-treated landfill leachate in a fed-batch reactor. Biotechnol Lett 25:695–699

    Article  CAS  PubMed  Google Scholar 

  40. Xie S, Ma Y, Strong PJ, Clarke WP (2015) Fluctuation of dissolved heavy metal concentrations in the leachate from anaerobic digestion of municipal solid waste in commercial scale landfill bioreactors: the effect of pH and associated mechanisms. J Hazard Mater 299:577–583

    Article  CAS  PubMed  Google Scholar 

  41. Sundaravadivel M, Vigneswaran S (2001) Constructed wetlands for wastewater treatment. Crit Rev Environ Sci Technol 31:351–409

    Article  CAS  Google Scholar 

  42. Zalesny RS Jr, Wiese AH, Bauer EO, Riemenschneider DE (2006) Sapflow of hybrid poplar (Populus nigra L.×P. maximowiczii A. Henry ‘NM6’) during phytoremediation of landfill leachate. Biomass Bioenergy 30:784–793

    Article  Google Scholar 

  43. Ogata Y, Ishigaki T, Ebie Y, Sutthasil N, Chiemchaisri C, Yamada M (2015) Water reduction by constructed wetlands treating waste landfill leachate in a tropical region. Waste Manag 44:164–171

    Article  PubMed  Google Scholar 

  44. Justin MZ, Pajk N, Zupanc V, Zupancic M (2010) Phytoremediation of landfill leachate and compost wastewater by irrigation of Populus and Salix: biomass and growth response. Waste Manag 30:1032–1042

    Article  CAS  PubMed  Google Scholar 

  45. Lavrova S, Koumanova B (2010) Influence of recirculation in a lab-scale vertical flow constructed wetland on the treatment efficiency of landfill leachate. Bioresour Technol 101:1756–1761

    Article  CAS  PubMed  Google Scholar 

  46. Yang L, Chang H-T, Huang M-NL (2001) Nutrient removal in gravel- and soil-based wetland microcosms with and without vegetation. Ecol Eng 18:91–105

    Article  Google Scholar 

  47. Yalcuk A, Ugurlu A (2009) Comparison of horizontal and vertical constructed wetland systems for landfill leachate treatment. Bioresour Technol 100:2521–2526

    Article  CAS  PubMed  Google Scholar 

  48. Herath I, Vithanage M (2015) Phytoremediation in constructed wetlands. In: Ansari AA, Gill SS, Gill R, Lanza GR, Newman L (eds) Phytoremediation. Springer, Cham

    Google Scholar 

  49. Bloor MC, Banks CJ (2005) Acute and sub-lethal toxicity of landfill leachate towards two macro-invertebrates: assessing the remediation potential of constructed wetlands. Process Saf Environ Prot 83:184–190

    Article  CAS  Google Scholar 

  50. Jones DL, Williamson KL, Owen AG (2006) Phytoremediation of landfill leachate. Waste Manag 26:825–837

    Article  CAS  PubMed  Google Scholar 

  51. Duggan J (2005) The potential for landfill leachate treatment using willows in the UK—a critical review. Resour Conserv Recycl 45:97–113

    Article  Google Scholar 

  52. Vymazal J (2008) Constructed wetlands, subsurface flow. In: Fath SEJD (ed) Encyclopedia of ecology. Academic, Oxford

    Google Scholar 

  53. Bentham H, Harris J, Birch P, Short K (1992) Habitat classification and soil restoration assessment using analysis of soil microbiological and physico-chemical characteristics. J Appl Ecol 29:711–718

    Article  Google Scholar 

  54. Wong M, Li M, Leung C, Lan C (1990) Decontamination of landfill leachate by soils with different textures. Biomed Environ Sci 3:429–442

    CAS  PubMed  Google Scholar 

  55. Bruch I, Alewell U, Hahn A, Hasselbach R, Alewell C (2014) Influence of soil physical parameters on removal efficiency and hydraulic conductivity of vertical flow constructed wetlands. Ecol Eng 68:124–132

    Article  Google Scholar 

  56. Petru BJ, Ahn C, Chescheir G (2013) Alteration of soil hydraulic properties during the construction of mitigation wetlands in the Virginia Piedmont. Ecol Eng 51:140–150

    Article  Google Scholar 

  57. Campbell D, Cole C, Brooks R (2002) A comparison of created and natural wetlands in Pennsylvania, USA. Wetl Ecol Manag 10:41–49

    Article  Google Scholar 

  58. Singh NP, Santal A (2015) Phytoremediation of heavy metals: the use of green approaches to clean the environment. In: Ansari AA, Gill SS, Gill R, Lanza GR, Newman L (eds) Phytoremediation. Springer, Cham

    Google Scholar 

  59. Handelsman J, Wackett LP (2002) Ecology and industrial microbiology: microbial diversity—sustaining the Earth and industry. Curr Opin Microbiol 5:237–239

    Article  PubMed  Google Scholar 

  60. Williams HG, Białowiec A, Slater F, Randerson PF (2010) Spatial variation of dissolved gas concentrations in a willow vegetation filter treating landfill leachate. Ecol Eng 36:1774–1778

    Article  Google Scholar 

  61. Brix H (1997) Do macrophytes play a role in constructed treatment wetlands? Water Sci Technol 35:11–17

    Article  CAS  Google Scholar 

  62. Hagmann DF, Goodey NM, Mathieu C, Evans J, Aronson MFJ, Gallagher F, Krumins JA (2015) Effect of metal contamination on microbial enzymatic activity in soil. Soil Biol Biochem 91:291–297

    Article  CAS  Google Scholar 

  63. Sawaittayothin V, Polprasert C (2007) Nitrogen mass balance and microbial analysis of constructed wetlands treating municipal landfill leachate. Bioresour Technol 98:565–570

    Article  CAS  PubMed  Google Scholar 

  64. Bialowiec A, Davies L, Albuquerque A, Randerson PF (2012) Nitrogen removal from landfill leachate in constructed wetlands with reed and willow: redox potential in the root zone. J Environ Manag 97:22–27

    Article  CAS  Google Scholar 

  65. Hoffmann D, Weih M (2005) Limitations and improvement of the potential utilisation of woody biomass for energy derived from short rotation woody crops in Sweden and Germany. Biomass Bioenergy 28:267–279

    Article  Google Scholar 

  66. Elowson S (1999) Willow as a vegetation filter for cleaning of polluted drainage water from agricultural land. Biomass Bioenergy 16:281–290

    Article  CAS  Google Scholar 

  67. Mitchell CP, Stevens EA, Watters MP (1999) Short-rotation forestry—operations, productivity and costs based on experience gained in the UK. For Ecol Manag 121:123–136

    Article  Google Scholar 

  68. Dobson M, Moffat A (1995) A re-evaluation of objections to tree planting on containment landfills. Waste Manag Res 13:579–600

    Article  Google Scholar 

  69. Białowiec A, Wojnowska-Baryła I, Agopsowicz M (2007) The efficiency of evapotranspiration of landfill leachate in the soil–plant system with willow Salix amygdalina L. Ecol Eng 30:356–361

    Article  Google Scholar 

  70. Persson G, Lindroth A (1994) Simulating evaporation from short-rotation forest: variations within and between seasons. J Hydrol 156:21–45

    Article  Google Scholar 

  71. Agopsowicz M (1994) Research on Salix sp. usefulness for landfill leachate treatment. Vth Polish congress on municipal engineering, Poland

    Google Scholar 

  72. Białowiec A, Wojnowska-Baryła I, Hasso-Agopsowicz M (2003) Effectiveness of leachate disposal by the young willow sprouts Salix amygdalina. Waste Manag Res 21:557–566

    Article  PubMed  Google Scholar 

  73. Dimitriou I, Aronsson P, Weih M (2006) Stress tolerance of five willow clones after irrigation with different amounts of landfill leachate. Bioresour Technol 97:150–157

    Article  CAS  PubMed  Google Scholar 

  74. Justin MZ, Zupancic M (2009) Combined purification and reuse of landfill leachate by constructed wetland and irrigation of grass and willows. Desalination 246:157–168

    Article  CAS  Google Scholar 

  75. Thompson PL, Ramer LA, Guffey AP, Schnoor JL (1998) Decreased transpiration in poplar trees exposed to 2,4,6-trinitrotoluene. Environ Toxicol Chem 17:902–906

    Article  CAS  Google Scholar 

  76. Smith D, Allen S (1996) Measurement of sap flow in plant stems. J Exp Bot 47:1833–1844

    Article  CAS  Google Scholar 

  77. Grosse W, Armstrong J, Armstrong W (1996) A history of pressurised gas-flow studies in plants. Aquat Bot 54:87–100

    Article  Google Scholar 

  78. Benstead J, Lloyd D (1994) Direct mass spectrometric measurement of gases in peat cores. FEMS Microbiol Ecol 13:233–240

    Article  Google Scholar 

  79. Nivala J, Hoos MB, Cross C, Wallace S, Parkin G (2007) Treatment of landfill leachate using an aerated, horizontal subsurface-flow constructed wetland. Sci Total Environ 380:19–27

    Article  CAS  PubMed  Google Scholar 

  80. Werker AG, Dougherty JM, McHenry JL, Van Loon WA (2002) Treatment variability for wetland wastewater treatment design in cold climates. Ecol Eng 19:1–11

    Article  Google Scholar 

  81. Akratos CS, Tsihrintzis VA (2007) Effect of temperature, HRT, vegetation and porous media on removal efficiency of pilot-scale horizontal subsurface flow constructed wetlands. Ecol Eng 29:173–191

    Article  Google Scholar 

  82. Tanner CC, Clayton JS, Upsdell MP (1995) Effect of loading rate and planting on treatment of dairy farm wastewaters in constructed wetlands—I. removal of oxygen demand, suspended solids and faecal coliforms. Water Res 29:17–26

    Article  CAS  Google Scholar 

  83. Kozub DD, Liehr SK (1999) Assessing denitrification rate limiting factors in a constructed wetland receiving landfill leachate. Water Sci Technol 40:75–82

    Article  CAS  Google Scholar 

  84. Hunt PG, Poach ME (2001) State of the art for animal wastewater treatment in constructed wetlands, Water Sci Technol 44:19–25

    Google Scholar 

  85. Bonomo L, Pastorelli G, Zambon N (1997) Advantages and limitations of duckweed-based wastewater treatment systems. Water Sci Technol 35:239–246

    Article  CAS  Google Scholar 

  86. Wittgren HB, Mæhlum T (1997) Wastewater treatment wetlands in cold climates. Water Sci Technol 35:45–53

    Article  CAS  Google Scholar 

  87. Sakadevan K, Bavor HJ (1998) Phosphate adsorption characteristics of soils, slags and zeolite to be used as substrates in constructed wetland systems. Water Res 32:393–399

    Article  CAS  Google Scholar 

  88. Ladislas S, Gérente C, Chazarenc F, Brisson J, Andrès Y (2015) Floating treatment wetlands for heavy metal removal in highway stormwater ponds. Ecol Eng 80:85–91

    Article  Google Scholar 

  89. Tanner CC, Headley TR (2011) Components of floating emergent macrophyte treatment wetlands influencing removal of stormwater pollutants. Ecol Eng 37:474–486

    Article  Google Scholar 

  90. Clemens S, Palmgren MG, Krämer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–315

    Article  CAS  PubMed  Google Scholar 

  91. Cureton PM, Groenevelt PH, McBride RA (1991) Landfill leachate recirculation: effects on vegetation vigor and clay surface cover infiltration. J Environ Qual 20:17–24

    Article  Google Scholar 

  92. Granley BA, Troung PN (2012) A changing industry: on-site phytoremediation of landfill leachate using trees and grasses-case studies, Global waste management symposium, Madison

    Google Scholar 

  93. Rosenqvist H, Aronsson P, Hasselgren K, Perttu K (1997) Economics of using municipal wastewater irrigation of willow coppice crops. Biomass Bioenergy 12:1–8

    Article  Google Scholar 

  94. McKendry P (2002) Energy production from biomass (part 2): conversion technologies. Bioresour Technol 83:47–54

    Article  CAS  PubMed  Google Scholar 

  95. Liu R, Zhao Y, Doherty L, Hu Y, Hao X (2015) A review of incorporation of constructed wetland with other treatment processes. Chem Eng J 279:220–230

    Article  CAS  Google Scholar 

  96. Grafias P, Xekoukoulotakis NP, Mantzavinos D, Diamadopoulos E (2010) Pilot treatment of olive pomace leachate by vertical-flow constructed wetland and electrochemical oxidation: an efficient hybrid process. Water Res 44:2773–2780

    Article  CAS  PubMed  Google Scholar 

  97. Bialowiec A, Randerson PF, Kopik M (2010) Using fractal geometry to determine phytotoxicity of landfill leachate on willow. Chemosphere 79:534–540

    Article  CAS  PubMed  Google Scholar 

  98. Alados C, Navarro T, Escós J, Cabezudo B, Emlen J (2001) Translational and fluctuating asymmetry as tools to detect stress in stress-adapted and nonadapted plants. Int J Plant Sci 162:607–616

    Article  Google Scholar 

  99. Sang N, Han M, Li G, Huang M (2010) Landfill leachate affects metabolic responses of Zea mays L. seedlings. Waste Manag 30:856–862

    Article  CAS  PubMed  Google Scholar 

  100. Okamura H, Piao M, Aoyama I, Sudo M, Okubo T, Nakamura M (2002) Algal growth inhibition by river water pollutants in the agricultural area around Lake Biwa, Japan. Environ Pollut 117:411–419

    Article  CAS  PubMed  Google Scholar 

  101. Yang L, Tsai K-Y (2007) Treatment of aged landfill leachate by cascade constructed wetland systems. Ecohydrol Hydrobiol 7:353–359

    Article  CAS  Google Scholar 

  102. Zalesny JA, Zalesny RS Jr, Coyle DR, Hall RB (2007) Growth and biomass of Populus irrigated with landfill leachate. For Ecol Manag 248:143–152

    Article  Google Scholar 

  103. Bulc TG (2006) Long term performance of a constructed wetland for landfill leachate treatment. Ecol Eng 26:365–374

    Article  Google Scholar 

  104. Chiemchaisri C, Chiemchaisri W, Junsod J, Threedeach S, Wicranarachchi PN (2009) Leachate treatment and greenhouse gas emission in subsurface horizontal flow constructed wetland. Bioresour Technol 100:3808–3814

    Article  CAS  PubMed  Google Scholar 

  105. Bulc T, Vrhovsek D, Kukanja V (1997) The use of constructed wetland for landfill leachate treatment. Water Sci Technol 35:301–306

    Article  CAS  Google Scholar 

  106. Kadlec RH, Zmarthie LA (2010) Wetland treatment of leachate from a closed landfill. Ecol Eng 36:946–957

    Article  Google Scholar 

  107. Sanford WE, Steenhuis TS, Surface JM, Peverly JH (1995) Flow characteristics of rock-reed filters for treatment of landfill leachate. Ecol Eng 5:37–50

    Article  Google Scholar 

  108. Martin CD, Johnson KD, Moshiri GA (1999) Performance of a constructed wetland leachate treatment system at the Chunchula landfill, Mobile County, Alabama. Water Sci Technol 40:67–74

    Article  CAS  Google Scholar 

  109. Mæhlum T (1995) Treatment of landfill leachate in on-site lagoons and constructed wetlands. Water Sci Technol 32:129–135

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meththika Vithanage Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kumarathilaka, P., Wijesekara, H., Bolan, N., Kunhikrishnan, A., Vithanage, M. (2017). Phytoremediation of Landfill Leachates. In: Ansari, A., Gill, S., Gill, R., R. Lanza, G., Newman, L. (eds) Phytoremediation. Springer, Cham. https://doi.org/10.1007/978-3-319-52381-1_17

Download citation

Publish with us

Policies and ethics