Skip to main content

Phytoremediation Application: Plants as Biosorbent for Metal Removal in Soil and Water

  • Chapter
  • First Online:

Abstract

Phytoremediation for metal-contaminated soils was started about 40 years ago, and the phytoremediation for organic pollutants is more recent. Phytoremediation has gained extensive attention and much progress in remediation of inorganic and organic contaminants and as the means for enhanced phytoremediation. Phytoremediation of various inorganic pollutants such as Cd, Cr, Pb, Cu, Zn, Co, Ni, Se, Cs, and As has been extensively studied. This is mainly based on the use of natural hyperaccumulator plants with exceptional metal-accumulating capacity, which can take up metals to concentrations at least an order of magnitude greater than the normal plants growing in the same environment. These plants have several beneficial characteristics such as the ability to accumulate metals in their shoots and an exceptionally high tolerance to heavy metals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Subhashini V, Swamy A (2013) Phytoremediation of Pb and Ni contaminated soils using Catharanthus roseus (L.). Univ J Environ Res Technol 3:465–472

    Google Scholar 

  2. Vamerali T, Bandiera M, Mosca G (2010) Field crops for phytoremediation of metal-contaminated land: a review. Environ Chem Lett 8:1–17. doi:10.1007/s10311-009-0268-0

    Article  CAS  Google Scholar 

  3. Cluis C (2004) Junk-Greedy Greens: phytoremediation as a new option for soil decontamination. BioTeach J 2:61–67

    Google Scholar 

  4. Padmavathiamma PK, Li LY (2007) Phytoremediation technology: hyper-accumulation metals in plants. Water Air Soil Pollut 184:105–126

    Article  CAS  Google Scholar 

  5. Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 31:869–881

    Article  Google Scholar 

  6. Chaudhry Q, Blom-Zandstra M, Gupta S, Joner E (2005) Utilizing the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment. Environ Sci Pollut Res 12:34–48

    Article  CAS  Google Scholar 

  7. Reed M, Glick B (2005) Growth of canola (Brassica napus) in the presence of plant growth-promoting bacteria and either copper or polycyclic aromatic hydrocarbons. Can J Microbiol 51:1061–1069

    Article  CAS  PubMed  Google Scholar 

  8. Raskin I, Ensley BD (2000) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York

    Google Scholar 

  9. Clemente R, Walker DJ, Bernal MP (2005) Uptake of heavy metals and As by Brassica juncea grown in a contaminated soil in Aznalcollar (Spain): the effect of soil amendments. Environ Pollut 138(1):46–58

    Article  CAS  PubMed  Google Scholar 

  10. Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  CAS  PubMed  Google Scholar 

  11. Hamzah A, Priyadarshini R (2014) Identification of wild grass as remediator plant on artisanal gold mine tailing. Plant Sci Int 1:33–40. doi:10.12735/psi.v1n1p33

    Article  Google Scholar 

  12. Jean-Paul S (2004) Potential of phytoremediation, an emerging green technology: European trends and outlook. Proc Ind Natl Sci Acad Part B Biol Sci 70:131–152

    Google Scholar 

  13. Pivetz P (2001) Phytoremediation of contaminated soil and ground water at hazardous waste sites. EPA/540/S-01/500, United States Environmental Protection Agency (EPA), Washington, DC, 36 p

    Google Scholar 

  14. Sharma H, Reddy K (2004) Geoenvironmental engineering: site remediation, waste containment and emerging waste management technologies. Wiley, New York

    Google Scholar 

  15. Malik R, Husain S, Nazir I (2010) Heavy metal contamination and accumulation in soil and wild plant species from industrial area of Islamabad, Pakistan. Pak J Bot 42:291–301

    CAS  Google Scholar 

  16. Garba S, Osemeahon A, Humphrey M, Barminas J (2012) Ethylene diamine tetraacetic acid (EDTA)—assisted phytoremediation of heavy metal contaminated soil by Eleusineindica L. Gearth. J Environ Chem Ecotoxicol 4:103–109

    CAS  Google Scholar 

  17. Compton H, Prince GR, Fredericks SC, Gussman CD (2003) Phytoremediation of dissolved phase organic compounds: optimal site considerations relative to field case studies. Remediation 13:21–37. doi:10.1002/rem.10072

    Article  Google Scholar 

  18. Elekes C (2014) Eco-technological solutions for the remediation of polluted soil and heavy metal recovery. In: Hernández-Soriano MC (ed) Environmental risk assessment of soil contamination. Rijeka, InTech, pp 309–335

    Google Scholar 

  19. Carvalho A, Nabais C, Roiloa SR, Rodriguez-Echeverria S (2013) Revegetation of abandoned copper mines: the role of seed banks and soil amendments. Web Ecol 13:69–77

    Article  Google Scholar 

  20. Sinha S, Mishra RK, Sinam G, Mallick S, Gupta AK (2013) Comparative evaluation of metal phytoremediation potential of trees, grasses and flowering plants from tannery wastewater contaminated soil in relation with physico-chemical properties. Soil Sediment Contam Int J 22:958–983

    Article  Google Scholar 

  21. United States Environmental Protection Agency, USEPA (2000) Electrokinetic and phytoremediation in situ treatment of metal-contaminated soil: state-of-the-practice. Draft for Final Review. EPA/542/R-00/XXX. US Environmental Protection Agency, Office of Solid Waste and Emergency Response Technology Innovation Office, Washington, DC

    Google Scholar 

  22. Ahmadpour P, Ahmadpour F, Mahmud T et al (2012) Phytoremediation of heavy metals: a green technology. Afr J Biotechnol 11:14036–14043

    CAS  Google Scholar 

  23. Zhen-Guo S, Xian-Dong L, Chun-Chun W, Huai-Man C, Hong C (2002) Lead phytoextraction from contaminated soil with highbiomass plant species. J Environ Qual 31:1893–1900

    Article  Google Scholar 

  24. Bridge G (2004) Contested terrain: mining and the environment. Annu Rev Env Resour 29:205–259

    Article  Google Scholar 

  25. Djingova R, Kuleff I (2000) Instrumental techniques for trace analysis. In: Vernet JP (eds) Trace elements: their distribution and effects in the environment. Elsevier, London, pp 146

    Google Scholar 

  26. Taiz L, Zeiger E (2002) Plant physiology. Sinauer Associates, Sunderland, p 690

    Google Scholar 

  27. Gaur A, Adholeya A (2004) Prospects of Arbuscular Mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Curr Sci 86:528–534

    CAS  Google Scholar 

  28. Ochonogor R, Atagana H (2014) Phytoremediation of heavy metal contaminated soil by Psoralea pinnata. Int J Environ Sci Dev 5:440–443

    Article  Google Scholar 

  29. Rylott EL, Bruce NC (2008) Plants disarm soil: engineering plants for the phytoremediation of explosives. Trends Biotechnol 27:73–81

    Article  PubMed  Google Scholar 

  30. Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. Commun Soil Sci Plant Anal 42:111–122

    Google Scholar 

  31. Navarro M, Perez-Sirvent C, Martinez-Sanchez M, Vidal J, Tovar P, Bech J (2008) Abandoned minen sites as a source of contamination by heavy metals: a case study in a semi-arid zone. J Geochem Explor 96:183–193

    Article  CAS  Google Scholar 

  32. Smical AI, Hotea V, Oros V, Juhasz J, Pop E (2008) Studies on transfer and bioaccumulation of heavy metals from soil into lettuce. Environ Eng Manag J 7:609–615

    CAS  Google Scholar 

  33. Peijnenburg W, Jager T (2003) Monitoring approaches to assess bioaccessibility and bioavailability of metals: matrix issues. Ecotoxicol Environ Saf 56:63–77

    Article  CAS  PubMed  Google Scholar 

  34. Sherene T (2010) Mobility and transport of heavy metals in polluted soil environment. Biol Forum Int J 2:112–121

    Google Scholar 

  35. Gupta AK, Sinha S (2007) Phytoextraction capacity of the plants growing on tannery sludge dumping sites. Bioresour Technol 98:1788–1794

    Article  CAS  PubMed  Google Scholar 

  36. Fijalkowski K, Kacprzak M, Grobelak A, Placek A (2012) The influence of selected soil parameters on the mobility of heavy metals in soils. Inzynieria i Ochrona Srodowiska 5:81–92

    Google Scholar 

  37. Shenker M, Fan T, Crowley D (2001) Phytosiderophores influence on cadmium mobilization and uptake by wheat and barley plants. J Environ Qual 30:2091–2098

    Article  CAS  PubMed  Google Scholar 

  38. Salt DE, Blaylock M, Kumar NPBA, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–475

    Article  CAS  PubMed  Google Scholar 

  39. Vandenhove H, van Hees M, van Winkel S (2001) Feasibility of phytoextraction to clean up low-level uranium-contaminated soil. Int J Phytoremediation 3:301–320

    Article  CAS  Google Scholar 

  40. Jadia CD, Fulekar MH (2008) Phytotoxicity and remediation of heavy metals by fibrous root grass (sorghum). J Appl Biosci 10:491–499

    Google Scholar 

  41. Ensley BD (2000) Rationale for the use of phytoremediation. Phytoremediation of toxic metals: using plants to clean-up the environment. Wiley, New York

    Google Scholar 

  42. Karkhanis M, Jadia CD, Fulekar MH (2005) Rhizofilteration of metals from coal ash leachate. Asian J Water Environ Pollut 1:91–94

    Google Scholar 

  43. Paz-Ferreiro J, Lu H, Fu S, Mendez A, Gasco G (2014) Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review. Solid Earth 5:65–75

    Article  Google Scholar 

  44. Basta N, Gradwohl R (2000) Estimation of Cd, Pb, and Zn bioavailability in smelter contaminated soils by a sequential extraction procedure. J Soil Contam 9:149–164

    Article  CAS  Google Scholar 

  45. Romkens P, Bouwman L, Japenga J, Draaisma C (2002) Potentials and drawbacks of chelate-enhanced phytoremediation of soils. Environ Pollut 116:109–121

    Article  CAS  PubMed  Google Scholar 

  46. Caille N, Swanwick S, Zhao FJ, McGrath SP (2004) Arsenic hyperaccumulation by Pteris vittata from arsenic contaminated soils and the effect of liming and phosphate fertilisation. Environ Pollut 132:113–120

    Article  CAS  PubMed  Google Scholar 

  47. Wu Q-T, Xu Z, Quingqiang M, Emilie G, Jean-louis M (2004) Characterization of cadmium desorption in soils and its relationship to plant uptake and cadmium leaching. Plant Soil 258:217–226

    Article  CAS  Google Scholar 

  48. Spirochova IK, Puncocharova J, Kafka Z, Kubal M, Soudek P, Vanek T (2003) Accumulation of heavy metals by in vitro cultures of plants. Water Air Soil Pollut Focus 3:269–276

    Article  Google Scholar 

  49. Garcia G, Faz A, Cunha M (2004) Performance of Piptatherum miliaceum (Smilo grass) inedaphic Pb and Zn phytoremediation over a short growth period. Int Biodeterior Biodegrad 54:245–250

    Article  CAS  Google Scholar 

  50. Mikus KV, Drobne D, Regvar M (2005) Zn, Cd, and Pb accumulation and arbuscular mycorrhizal colonization of pennycress Thlaspi praecox Wulf (Brassicaceae) from the vicinity of lead mine and smelter in Slovenia. Environ Pollut 133:233–242

    Article  Google Scholar 

  51. Sekhar KC, Kamala CT, Chary NS, Balaram V, Garcia G (2005) Potential of Hemidesmus indicus for phytoextraction of lead from industrially contaminated soils. Chemosphere 58:507–514

    Article  Google Scholar 

  52. Dixit A, Dixit S, Goswami CS (2011) Process and plants for wastewater remediation: a review. Sci Rev Chem Commun 11:71–77

    Google Scholar 

  53. Roongtanakiat N, Tangruangkiat S, Meesat R (2007) Utilization of vetiver grass (Vetiveria zizanioides) for removal of heavy metals from industrial waste waters. Sci Asia 33:397–403

    Article  CAS  Google Scholar 

  54. Lu Q, He ZL, Graetz DA (2010) Phytoremediation to remove nutrients and improve eutrophic stormwaters using water lettuce (Pistia stratiotes L.). Environ Sci Pollut Res 17:84–96

    Article  CAS  Google Scholar 

  55. Singh OV, Labana S, Pandey G, Budhiraja R, Jain RK (2003) Phytoremediation: an overview of metallic ion decontamination from soil. Appl Microbiol Biotechnol 61:405–412

    Article  CAS  PubMed  Google Scholar 

  56. Jamuna S, Noorjahan CM (2009) Treatment of sewage waste water using water hyacinth—Eichhornia sp and its reuse for fish culture. Toxicol Int 16:103–106

    Google Scholar 

  57. Tripathy B, Upadhyay R (2003) Dairy effluent polishing by aquatic macrophytes. Water Air Soil Pollut 9:377–385

    Article  Google Scholar 

  58. Lasat MM (2002) Phytoextraction of toxic metals: a review of biological mechanisms. J Environ Qual 31:109–120

    Article  CAS  PubMed  Google Scholar 

  59. Sooknah RD, Wilkie AC (2004) Nutrient removal by floating aquatic macrophytes cultured in anaerobically digested flushed dairy manure wastewater. Ecol Eng 22:27–42

    Article  Google Scholar 

  60. Malik A (2007) Environmental challenge vis a vis opportunity: the case of water hyacinth. Environ Int 33:122–138

    Article  CAS  PubMed  Google Scholar 

  61. Valero M, Johnson M, Mara D (2007) Enhanced phosphorus removal in a waste stabilization pond system with blast furnace slag filters. In: Second international conference small Wat, Seville, Spain

    Google Scholar 

  62. Jianbo L, Zhihui F, Zhaozheng N (2008) Performance of a water hyacinth (Eichhornia crassipes) system in the treatment of wastewater from a duck farm and the effects of using water hyacinth as duck feed. J Environ Sci 20:513–519

    Article  Google Scholar 

  63. Chen X, Chen X, Wan X, Weng B, Huang Q (2010) Water hyacinth (Eichhornia crassipes) waste as an adsorbent for phosphorus removal from swine wastewater. Bioresour Technol 101:9025–9030

    Article  CAS  PubMed  Google Scholar 

  64. Ismail Z, Othman SZ, Law K, Sulaiman AH, Hashim R (2015) Comparative performance of water hyacinth (Eichhornia crassipes) and water lettuce (Pista stratiotes) in preventing nutrients build-up in municipal wastewater. CLEAN Soil Air Water 43:521–531

    Article  CAS  Google Scholar 

  65. Valipour A, Raman VK, Ahn YH (2015) Effectiveness of domestic wastewater treatment using a bio-hedge water hyacinth wetland system. Water 7:329–347

    Article  Google Scholar 

  66. Liao S, Chang W (2004) Heavy metal phytoremediation by water hyacinth at constructed wetlands in Taiwan. Photogramm Eng Remote Sens 54:177–185

    Google Scholar 

  67. Xiaomei L, Kruatrachue M, Pokethitiyook P, Homyok K (2004) Removal of cadmium and zinc by water hyacinth, Eichhornia Crassipes. Sci Asia 30:93–103

    Article  Google Scholar 

  68. Shabana Y, Mohamed ZA (2005) Integrated control of water hyacinth with a ycoherbicide and a phenylpropanoid pathway inhibitor. Biocontrol Sci Technol 15:659–669

    Article  Google Scholar 

  69. Gupta A, Balomajumder C (2015) Removal of Cr (VI) and phenol using water hyacinth from single and binary solution in the artificial photosynthesis chamber. J Water Process Eng 7:74–82

    Article  Google Scholar 

  70. Padmapriya G, Murugesan AG (2012) Phytoremediation of various heavy metals (Cu, Pb and Hg) from aqueous solution using water hyacinth and its toxicity on plants. Int J Environ Biol 2:97–103

    Google Scholar 

  71. Zhang H (2004) Personal communication, Soil, Water & Forage Analytical Laboratory. Oklahoma State University, Stillwater

    Google Scholar 

  72. Salt DE, Prince RC, Pickering IJ (2002) Chemical speciation accumulated metals in plants: evidence from X-ray absorption spectroscopy. Microchem J 71:255–259

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasha H. Mahmoud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mahmoud, R.H., Hamza, A.H.M. (2017). Phytoremediation Application: Plants as Biosorbent for Metal Removal in Soil and Water. In: Ansari, A., Gill, S., Gill, R., R. Lanza, G., Newman, L. (eds) Phytoremediation. Springer, Cham. https://doi.org/10.1007/978-3-319-52381-1_15

Download citation

Publish with us

Policies and ethics