Skip to main content

Modelling Phytoremediation: Concepts, Models, and Approaches

  • Chapter
  • First Online:

Abstract

In the phytoremediation modelling stage, which is specific due to unavoidable assumptions and limitations, the complicated nature of natural processes, and different qualifications of model developers result in the variety of phytoremediation-oriented models that differs in complication and the extent of applicability. The variety of phytoremediation models is not only naturally understandable, but also serves specificity of model application. In other words, the choice of a model and the need for detailed result depend on the prospects of the model use, e.g., for preliminary assessment of the phytoremediation effect, phytoremediation cost estimation or contaminant distribution among the plant compartments. This chapter discusses the prospects of application of the phytoremediation assessment tools, such as Phyto-DSS, BALANS, Dynamic factor method, and Hung and Mackay model used for simulating the contaminant transfer processes in the soil–plant–atmosphere system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Markert B, Wunschmann S, Baltrėnaitė E (2012) Aplinkosstebėjimonaujovės. Bioindikatoriaiirbiomonitoriniai: apibrėžtys, strategijosirtaikymas. [Innovative observation of the environment. bioindicators and biomonitors: definitions, strategies and applications]. J Environ Eng Landsc Manag 20(3):221–239

    Article  Google Scholar 

  2. Bashkin VN (2002) Model biogeochemistry. Kluwer Academic, Dordrecht, 561p

    Google Scholar 

  3. Robinson B, Fernandez JE, Madejon P, Maranon T, Murillo JM, Green S, Clothier B (2003) Phytoextraction: an assessment of biogeochemical and economical viability. Plant Soil 249:117–125

    Article  CAS  Google Scholar 

  4. Stephan UW, Scholz G (1993) Nicotianamine: mediator of transport of iron and heavy metals in the phloem? Physiol Plant 88:522–529

    Article  CAS  Google Scholar 

  5. Liang H-M, Lin T-H, Chiou J-M, Yeh K-C (2009) Model evaluation of the phytoextraction potential of heavy metal hyperaccumulators and non-hypraccumulators. Environ Pollut 157:1945–1952

    Article  CAS  PubMed  Google Scholar 

  6. Trapp S, McFarlane JC (1995) Plant contamination: modelling and simulation of organic chemical processes. Lewis Publishers, Boca Raton

    Google Scholar 

  7. Boersma L, Lindstrom FT, Childs SW (1991) Model for steady state coupled transport in xylem and phloem. Agron J 83:401–415

    Article  Google Scholar 

  8. Ouyang Y (2002) Phytoremediation: modelling plant uptake and contaminant transport in the soil–plant–atmosphere continuum. J Hydrol 266:66–82

    Article  CAS  Google Scholar 

  9. Guala SD, Vega FA, Covelo EF (2010) Heavy metal concentrations in plants and different harvestable parts: a soil–plant equilibrium model. Environ Pollut 158:2659–2663

    Article  CAS  PubMed  Google Scholar 

  10. Moreno JL, Sanchez-Marin A, Hernandez T, Garcia C (2006) Effect of cadmium on microbial activity and ryegrass crop in two semiarid soils. Environ Manag 37(5):626–633

    Article  Google Scholar 

  11. Hung H, Mackay D (1997) A novel and simple model of the uptake of organic chemicals by vegetation from air and soil. Chemosphere 35:959–977

    Article  CAS  PubMed  Google Scholar 

  12. Baltrėnaitė E, Butkus D (2007) Modelling of Cu, Ni, Zn, Mn and Pb transport from soil to seedlings of coniferous and leafy trees. J Envir Eng Landsc Manag 15(4):200–207

    Google Scholar 

  13. Baltrėnaitė E, Baltrėnas P, Lietuvninkas A (2016) The Sustainable role of the tree in environmental protection technologies. Monograph. Springer, Berlin, 280p

    Book  Google Scholar 

  14. Lietuvninkas A (2002) Anthropogenic geochemical anomalies and environmental protection. Publishing House of Scientific and Technological Literature, Tomsk, 290p (in Russian)

    Google Scholar 

  15. Baltrėnaitė E, Lietuvninkas A, Baltrėnas P (2016) Modelling the balance of metals in the amended soil for the case of ‘atmosphere-plant-soil’ system. Environ Model Assess 21(5):577–590

    Google Scholar 

  16. Krastinytė V, Baltrėnaitė E, Lietuvninkas A (2013) Analysis of snow-cap pollution for the air quality assessment in the vicinity of oil refinery. Environ Technol 34(6):757–763

    Article  PubMed  Google Scholar 

  17. Malinina MS (2012) Variation of chemical elements distribution in albeluvisols in a long-term application of sewage sludge. Soil Manag 12:1269–1277. (in Russian)

    Google Scholar 

  18. Baltrėnaitė E, Lietuvninkas A, Baltrėnas P, Singh BR, Moskvitina N, Vaishlya O (2016) The influence of some particular biotic and abiotic factors on distribution of metal concentrations in the soil–pine system. In: Ozturk M, Ashraf M, Aksoy A, Ahmad MSA, Hakeem KR (eds) Plants, pollutants, remediation. Springer, Berlin. http://www.springer.com/us/book/9789401771931

  19. Mingorance MD, Valdes B, Rossini OS (2007) Strategies of heavy metal uptake by plants growing under industrial emissions. Environ Int 33:514–520

    Article  CAS  PubMed  Google Scholar 

  20. Baltrėnaitė E, Lietuvninkas A, Baltrėnas P (2012) Use of dynamic factors to assess metal uptake and transfer in plants—example of trees. Water Air Soil Pollut 223(7):4297–4306

    Article  Google Scholar 

  21. Baltrėnaitė E, Baltrėnas P, Butkus D, Lietuvninkas A (2015) Using the dynamic factors method in bioindication and phytoremediation. In: Ansari AA, Gill SS, Gill R, Lanza GR, Newman L (eds) Phytoremediation: management of environmental contaminants, vol 1. Springer, Berlin, pp 21–30

    Google Scholar 

  22. Zheng R, Chen Z, Cai C, Tie B, Liu X, Reid BJ, Huang Q, Lei M, Sun G, Baltrėnaitė E (2015) Mitigating heavy metal accumulation into rice (Oryzasativa L.) using biochar amendment—a field experiment in Hunan, China. Environ SciPollut Res. 22(14):11097–11108. doi:10.1007/s11356-015-4268-2

    Article  CAS  Google Scholar 

  23. Baltrėnaitė E, Butkus D, Booth CA (2010) Comparison of three tree-ring sampling methods for trace metal analysis. J Environ Eng Landsc Manage 18(3):170–178

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edita Baltrėnaitė .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Baltrėnaitė, E., Baltrėnas, P., Lietuvninkas, A. (2017). Modelling Phytoremediation: Concepts, Models, and Approaches. In: Ansari, A., Gill, S., Gill, R., R. Lanza, G., Newman, L. (eds) Phytoremediation. Springer, Cham. https://doi.org/10.1007/978-3-319-52381-1_12

Download citation

Publish with us

Policies and ethics