The Result: A New Design Paradigm

  • M. Roos
  • S. Abedini
  • E. Abele
  • K. Albrecht
  • R. Anderl
  • M. Gibbels
  • S. Gramlich
  • P. Groche
  • B. Horn
  • A. Hoßfeld
  • S. Köhler
  • H. Lüthen
  • I. Mattmann
  • T. Melz
  • V. Monnerjahn
  • C. Müller
  • M. Neuwirth
  • J. Niehuesbernd
  • M. Özel
  • M. Pfetsch
  • J. Reising
  • S. Schäfer
  • S. Schmidt
  • E. Turan
  • S. Ulbrich
  • C. Wagner
  • A. Walter
  • T. Weber Martins
  • A. Zimmermann
Chapter

Abstract

One of the key challenges faced by engineers is finding, concretizing, and optimizing solutions for a specific technical problem in the context of requirements and constraints (Pahl et al. 2007). Depending on the technical problem’s nature, specifically designed products and processes can be its solution with product and processes depending on each other. Although products are usually modeled within the context of their function, consideration of the product’s life cycle processes is also essential for design. Processes of the product’s life cycle concern realization of the product (e.g., manufacturing processes), processes that are realized with the help of the product itself (e.g., use processes) and processes at the end of the product’s life cycle (recycling or disposal). Yet, not just product requirements have to be considered during product development, as requirements regarding product life cycle processes need to be taken into account, too. Provision for manufacturing process requirements plays an important role in realizing the product’s manufacturability, quality, costs, and availability (Chap. 3). Further life cycle demands, such as reliability, durability, robustness, and safety, result in additional product and life cycle process requirements. Consequently, the engineer’s task of finding optimal product and process solutions to solve a technical problem or to fulfill a customer need is characterized by high complexity, which has to be handled appropriately (Chaps. 5 and 6).

Keywords

Anticipation Integration Concurrent development Multifunctional linear motion system Snap-fit fastening Nonlinear bifurcation 

References

  1. Albrecht K, Anderl R (2014) Erweiterung des Informationsmodells zur Integration von Informationen aus der Produktentstehung. In: Groche P (ed) Tagungsband 5. Zwischenkolloquium SFB 666, Mörfelden-Walldorf, 19–20 November 2014Google Scholar
  2. Albrecht K, Weber Martins T, Anderl R (2014a) An information model representing nonlinear flow splitting of bifurcated sheet metal. In: Proceedings of the ACEAT—Annual Conference on Engineering and Technology, Osaka, Japan, p 313–321Google Scholar
  3. Albrecht K, Weber Martins T, Anderl R (2014b) Nichtlineares Spaltprofilieren von Blechprofilen im rechnergestützten Produktentwicklungsprozess. In: Brökel KF, Grote KH, Rieg F, Stelzer R (eds) 12. Gemeinsames Kolloquium Konstruktionstechnik (KT 2014), Methoden in der Produktentwicklung: Kopplung von Strategie und Werkzeugen im Produktentwicklungsprozess, Bayreuth, 16–17 October 2014, p 203–212Google Scholar
  4. Andreassen E, Clausen A, Schevenels M, Lazarov B, Sigmund O (2001) Efficient topology optimization in MATLAB using 88 lines of code. Struct Multidiscip Optim 43(1):1–16CrossRefGoogle Scholar
  5. Bendsøe M, Sigmund O (2004) Topology optimization: theory, methods, and applications, 2nd edn. Springer, BerlinCrossRefGoogle Scholar
  6. Schüco Germany (2016) https://www.schueco.com/web2/com. Accessed 08 Sept 2016
  7. Göllner T, Lüthen H, Pfetsch ME, Ulbrich S (2014) Profiloptimierung im Rahmen eines durchgängigen Produktentstehungsprozesses. In: Groche P (ed) Tagungsband: 5. Zwischenkolloquium SFB 666, Mörfelden-Walldorf, 19–20 November 2014, p 15–24Google Scholar
  8. Hoschek J, Lasser D (1992) Grundlagen der geometrischen Datenverarbeitung, 2. neubearb. und erw. Auflage. Teubner, StuttgartGoogle Scholar
  9. Iku®windows (2016) Willkommen bei iku®window. http://www.iku-windows.com/. Accessed 08 Sept 2016
  10. Mattmann I, Roos M, Gramlich S (2014) Transformation und Integration von Marktanforderungen und fertigungstechnologischen Erkenntnissen in die Produktentwicklung. In: Groche P (ed) Tagungsband 5. Zwischenkolloquium SFB 666, Mörfelden-Walldorf, 19–20 November 2014, p 5–14Google Scholar
  11. Neuwirth M, Özel M, Schmitt W, Rullmann F (2014) Flexibles Spaltprofilieren: Verfahren und numerische Abbildung. In: 9. Fachtagung Walzprofilieren & 5. Zwischenkolloquium SFB 666, Mörfelden-Walldorf, 19–20 November 2014Google Scholar
  12. Pahl G, Beitz W, Feldhusen J, Grote KH (2007) Engineering design: a systematic approach, 3rd edn. Springer, LondonCrossRefGoogle Scholar
  13. Roos M, Horn B, Gramlich S, Ulbrich S, Kloberdanz H (2016) Manufacturing integrated algorithm-based product design: case study of a snap-fit fastening. In: Wang L, Kjellberg R (eds) Procedia CIRP, vol 50, 26th CIRP Design Conference, p 123–128Google Scholar
  14. Serbot (2016) Fassadenreinigung. http://serbot.ch/de/fassadenreinigung. Accessed 08 Sept 2016
  15. Weber Martins T, Albrecht K, Anderl R (2015a) Automated Import of XML-Files Containing Optimized Geometric Data to 3D–CAD-Models of Non-Linear Integral Bifurcated Sheet Metal Parts. In: Proceedings of the ASME 2015—International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Boston, Massachusetts, 2–5 August 2015Google Scholar
  16. Weber Martins T, Albrecht K, Anderl R (2015b) Entwicklung von Modellierungsfeatures für nichtlineares Spaltprofilieren und Spaltbiegen in CAD-Systemen. In: Tagungsband der 12. Magdeburger Maschinenbau-Tage, MagdeburgGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • M. Roos
    • 1
  • S. Abedini
    • 2
  • E. Abele
    • 3
  • K. Albrecht
    • 4
  • R. Anderl
    • 4
  • M. Gibbels
    • 5
  • S. Gramlich
    • 1
  • P. Groche
    • 6
  • B. Horn
    • 7
  • A. Hoßfeld
    • 3
  • S. Köhler
    • 6
  • H. Lüthen
    • 8
  • I. Mattmann
    • 1
  • T. Melz
    • 5
    • 9
  • V. Monnerjahn
    • 6
  • C. Müller
    • 10
  • M. Neuwirth
    • 6
  • J. Niehuesbernd
    • 10
  • M. Özel
    • 6
  • M. Pfetsch
    • 8
  • J. Reising
    • 2
  • S. Schäfer
    • 2
  • S. Schmidt
    • 3
  • E. Turan
    • 3
  • S. Ulbrich
    • 7
  • C. Wagner
    • 1
  • A. Walter
    • 7
  • T. Weber Martins
    • 4
  • A. Zimmermann
    • 2
  1. 1.Institute for Product Development and Machine Elements (pmd), Technische Universität DarmstadtDarmstadtGermany
  2. 2.Institute of Construction Design and Building Construction (KGBauko), Technische Universität DarmstadtDarmstadtGermany
  3. 3.Institute for Production Management, Technology and Machine Tools (PTW), Technische Universität DarmstadtDarmstadtGermany
  4. 4.Department of Computer Integrated Design (DiK), Technische Universität DarmstadtDarmstadtGermany
  5. 5.Research group System Reliability, Adaptive Structures, and Machine Acoustics (SAM), Technische Universität DarmstadtDarmstadtGermany
  6. 6.Institute for Production Engineering and Forming Machines (PtU), Technische Universität DarmstadtDarmstadtGermany
  7. 7.Research Group Nonlinear Optimization (NOpt), Technische Universität DarmstadtDarmstadtGermany
  8. 8.Research Group Discrete Optimization (DOpt), Technische Universität DarmstadtDarmstadtGermany
  9. 9.Fraunhofer Institute for Structural Durability and System Reliability LBF (LBF), Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.MunichGermany
  10. 10.Physical Metallurgy (PhM), Technische Universität DarmstadtDarmstadtGermany

Personalised recommendations