The CRC666 Approach: Realizing Optimized Solutions Based on Production Technological Innovation

  • V. MonnerjahnEmail author
  • E. Bruder
  • S. Gramlich
  • P. Groche
  • S. Köhler
  • I. Mattmann
  • M. Roos
  • C. Wagner


Finding technical solutions for given problems is one of a designer’s key challenges. The task is especially demanding since the designer tries to find not only one possible solution but also the best possible solution, taking all existing conditions, limitations, and requirements into account (Pahl et al. 2007). There are many product development approaches that support the designer in this. The focus and drivers of the approaches differ:
  • Reduction of complexity (Suh 1998)

  • Integration of product development in company processes (Ehrlenspiel and Meerkamm 2013)

  • Methodical approach based on analysis and synthesis steps (VDI 2221 1993)

  • Cross-domain development of systems with a focus on mechatronic systems (VDI 2206 2004)

  • Sustainable product design (Birkhofer et al. 2012)

  • Effectiveness and efficiency (Lindemann 2009)

  • Flexibility (Lindemann 2009)

  • Cost and time reduction; quality improvement (Eder and Hosnedl 2010)

  • Computer-aided automatization (Weber 2005)


Mathematical optimization Product innovation Process innovation Manufacturing-induced properties Manufacturing technologies 


  1. Adamy J (2011) Fuzzy Logik, Neuronale Netze und Evolutionäre Algorithmen. Shaker Verlag, AachenGoogle Scholar
  2. Agapiou J (1992) The optimization of machining operations based on a combined criterion, part 1: the use of combined objectives in single-pass operations. J Eng Ind 114(4):500–507CrossRefGoogle Scholar
  3. Alla A, Hinze M, Lass O, Ulbrich S (2015) Model order reduction approaches for the optimal design of permanent magnets in electro-magnetic machines. IFAC-PapersOnLine 48(1):242–247CrossRefGoogle Scholar
  4. Beyer HG, Sendhoff B (2007) Robust optimization—a comprehensive survey. Comput Methods Appl Mech Eng 196(33–34):3190–3218CrossRefGoogle Scholar
  5. Biegler LT (2010) Nonlinear programming: concepts, algorithms, and applications to chemical processes. SIAM, PhiladelphiaCrossRefGoogle Scholar
  6. Birkhofer H, Wäldele M (2008) Properties and characteristics and attributes and…: an approach on structuring the description of technical systems. In: Vanek V, Hosnedl S, Bartak J (eds) Proceedings of AEDS 2008 Workshop. Pilsen, pp 19–34Google Scholar
  7. Birkhofer H, Rath K, Thao S (2012) Umweltgerechtes Konstruieren. In: Rieg F, Steinhilper R (eds) Handbuch Konstruktion. Hanser, MünchenGoogle Scholar
  8. Bixby RE (2002) Solving real-world linear programs: a decade and more of progress. Oper Res 50(1):3–15CrossRefGoogle Scholar
  9. Conn AR, Scheinberg K, Vicente LN (2009) Introduction to derivative-free optimization. SIAM, PhiladelphiaCrossRefGoogle Scholar
  10. Din 8580 (2003) Deutsches Institut für Normung e. V: Fertigungsverfahren—Begriffe, EinteilungGoogle Scholar
  11. Eder WE, Hosnedl S (2010) Introduction to design engineering: systematic creativity and management. CRC Press/Balkema, LeidenCrossRefGoogle Scholar
  12. Ehrlenspiel K, Meerkamm H (2013) Integrierte Produktentwicklung: Denkabläufe, Methodeneinsatz, Zusammenarbeit, 5. überarb. und erw. Auflage. Hanser, MünchenGoogle Scholar
  13. Fritz AH, Schulze G (2008) Fertigungstechnik. Springer, BerlinCrossRefGoogle Scholar
  14. Gramlich S (2013) Vom fertigungsgerechten Konstruieren zum produktionsintegrierenden Entwickeln: Durchgängige Modelle und Methoden im Produktlebenszyklus. Fortschritt-Berichte VDI, Konstruktionstechnik/Maschinenelemente, vol 423. VDI-Verlag, DüsseldorfGoogle Scholar
  15. Groche P, Scheitza M, Kraft M, Schmitt S (2010) Increased total flexibility by 3D Servo Presses. CIRP Ann Manuf Technol 59(1):267–270CrossRefGoogle Scholar
  16. Groche P, Schmitt W, Bohn A, Gramlich S, Ulbrich S, Günther U (2012) Integration of manufacturing-induced properties in product design. CIRP Ann 61(1):163–166CrossRefGoogle Scholar
  17. Grote K-H, Antonsson EK (eds) (2009) Springer handbook of mechanical engineering. Springer, BerlinGoogle Scholar
  18. Heidemann B (2001) Trennende Verknüpfung: Ein Prozessmodell als Quelle für Produktideen. Fortschritt-Berichte VDI, Konstruktionstechnik/Maschinenelemente, vol 351. VDI-Verlag, DüsseldorfGoogle Scholar
  19. Jarre F, Stoer J (2013) Optimierung. Springer-Verlag, BerlinGoogle Scholar
  20. Koch T, Hiller B, Pfetsch ME, Schewe L (2015) Evaluating gas network capacities. SIAM, PhiladelphiaCrossRefGoogle Scholar
  21. Lappe W, Niemeier R (2002) Rollfügen—Der “coole” Weg zum Profil. Stahlbau 71(11):781–788CrossRefGoogle Scholar
  22. Lange K (1988) Umformtechnik: Handbuch für die Industrie und Wissenschaft. Band 2: Massivumformung. Springer, BerlinGoogle Scholar
  23. Lange K (ed) (1990) Umformtechnik: Handbuch für die Industrie und Wissenschaft. Band 3: Blechbearbeitung. Springer, BerlinGoogle Scholar
  24. Lawler EL, Wood DE (1966) Branch-and-bound methods: a survey. Oper Res 14(4):699–719CrossRefGoogle Scholar
  25. Lindemann U (2009) Methodische Entwicklung technischer Produkte: Methoden flexibel und situationsgerecht anwenden, 3. korr. Auflage. Springer, BerlinGoogle Scholar
  26. Marsden AL, Wang M, Dennis JE Jr, Moin P (2004) Suppression of vortex-shedding noise via derivative-free shape optimization. Phys Fluids 16(10):L83–L86CrossRefGoogle Scholar
  27. Naceur H, Guo YQ, Batoz JL, Knopf-Lenoir C (2001) Optimization of drawbead restraining forces and drawbead design in sheet metal forming process. Int J Mech Sci 43(10):2407–2434CrossRefGoogle Scholar
  28. Nocedal J, Wright S (2006) Numerical optimization. Springer Science & Business Media, New YorkGoogle Scholar
  29. Pahl G, Beitz W, Feldhusen J, Grote KH (2006) Pahl/Beitz Konstruktionslehre: Grundlagen erfolgreicher Produktentwicklung—Methoden und Anwendung. Springer, BerlinGoogle Scholar
  30. Pahl G, Beitz W, Feldhusen J, Grote KH (2007) Engineering design: a systematic approach, 3rd edn. Springer, LondonCrossRefGoogle Scholar
  31. Pelz PF, Groche P (eds) (2015) Uncertainty in mechanical engineering II. Trans Tech Publications, DarmstadtGoogle Scholar
  32. Roy R, Hinduja S, Teti R (2008) Recent advances in engineering design optimisation: challenges and future trends. CIRP Ann Manuf Technol 57(2):697–715CrossRefGoogle Scholar
  33. Schmitt SO, Avemann J, Groche P (2012) Development of manufacturing process chains considering uncertainty. In: Proceedings of the 4th International Conference on Changeable, Agile, Reconfigurable and Virtual production, Montreal, Canada, 2–5 Oct 2011, Springer, Berlin, , pp 111–116Google Scholar
  34. Son YK, Park CS (1987) Economic measure of productivity, quality and flexibility in advanced manufacturing systems. J Manuf Syst 6(3):193–207CrossRefGoogle Scholar
  35. Suh NP (1998) Axiomatic design theory for systems. Res Eng Des 10(4):189–209CrossRefGoogle Scholar
  36. Tekkaya AE, Allwood JM, Bariani PF, Bruschi S, Cao J, Gramlich S, Groche P, Hirt G, Ishikawa T, Löbbe C, Lueg-Althoff J, Merklein M, Misiolek WZ, Pietrzyk M, Shivpuri R, Yanagimoto J (2015) Metal forming beyond shaping: predicting and setting product properties. CIRP Ann 64(2):629–653CrossRefGoogle Scholar
  37. Tschaetsch H (2006) Metal forming practise: processes—machines—tools. Springer, Berlin, HeidelbergGoogle Scholar
  38. Verein Deutscher Ingenieure (1993) Methodik zum Entwickeln und Konstruieren technischer Systeme und Produkte, Richtlinie VDI 2221. VDI, DüsseldorfGoogle Scholar
  39. Verein Deutscher Ingenieure (2004) Entwicklungsmethodik für mechatronische Systeme, Richtlinie VDI 2206. VDI, DüsseldorfGoogle Scholar
  40. Weber C (2005) CPM/PDD: an extended theoretical approach to modelling products and product development processes. In: Bley H, Jansen H, Krause FL, Shpitalni M (eds) Proceedings of the 2nd German-Israeli symposium for design and manufacturing. Fraunhofer IRB Verlag, Stuttgart, pp 159–179Google Scholar
  41. Wiebenga JH, van den Boogaard AH, Klaseboer G (2012) Sequential robust optimization of a V-bending process using numerical simulations. Struct Multidiscip Optim 46(1):137–153CrossRefGoogle Scholar
  42. Westkämper E (ed) (1997) Null-Fehler-Produktion in Prozeßketten: Maßnahmen zur Fehlervermeidung und -kompensation. Qualitätsmanagement. Springer, BerlinGoogle Scholar
  43. Westkämper E, Warnecke H-J (eds) (2010) Einführung in die Fertigungstechnik. Vieweg+Teubner Verlag, WiesbadenGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • V. Monnerjahn
    • 1
    Email author
  • E. Bruder
    • 2
  • S. Gramlich
    • 3
  • P. Groche
    • 1
  • S. Köhler
    • 1
  • I. Mattmann
    • 3
  • M. Roos
    • 3
  • C. Wagner
    • 3
  1. 1.Institute for Production Engineering and Forming Machines (PtU)Technische Universität DarmstadtDarmstadtGermany
  2. 2.Physical Metallurgy (PhM)Technische Universität DarmstadtDarmstadtGermany
  3. 3.Institute for Product Development and Machine Elements (pmd)Technische Universität DarmstadtDarmstadtGermany

Personalised recommendations