Skip to main content

Abstract

Sexual development is driven by a number of genetic factors, many of which are associated with the sex chromosomes. Typically, males have one X chromosome and one Y chromosome, while females have two X chromosomes. Differences in the number of sex chromosomes or pathogenic variants in genes involved in sex development often lead to differences in multiple body systems. Individuals with sex chromosome abnormalities and disorders of sexual development may be candidates for fertility preservation and discussion of genetic risk for future offspring. This chapter discusses gonadal function, fertility potential and preservation, and reproductive considerations for individuals with these disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stochholm K et al. Prevalence, incidence, diagnostic delay, and mortality in Turner syndrome. J Clin Endocrinol Metab. 2006;91(10):3897–902.

    Article  CAS  PubMed  Google Scholar 

  2. Pinsker JE. Clinical review: Turner syndrome: updating the paradigm of clinical care. J Clin Endocrinol Metab. 2012;97(6):E994–1003.

    Article  CAS  PubMed  Google Scholar 

  3. ALvarez-Nava F et al. Molecular analysis in Turner syndrome. J Pediatr. 2003;142(3):336–40.

    Article  CAS  PubMed  Google Scholar 

  4. Rivkees S. Beyond the karyotype: are new screening methods needed for girls with Turner’s syndrome? J Pediatr Endocrinol Metab. 2006;19(9):1093–4.

    PubMed  Google Scholar 

  5. Oliveira RM et al. Y chromosome in Turner syndrome: review of the literature. Sao Paulo Med J. 2009;127(6):373–8.

    Article  PubMed  Google Scholar 

  6. Sallai A et al. Y-chromosome markers in Turner syndrome: screening of 130 patients. J Endocrinol Invest. 2010;33(4):222–7.

    Article  CAS  PubMed  Google Scholar 

  7. Gonzalez C et al. Concise review: fertility preservation: an update. Stem Cells Transl Med. 2012;1(9):668–72.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Oktay K, Rodriguez-Wallberg KA, Sahin G. Fertility preservation by ovarian stimulation and oocyte cryopreservation in a 14-year-old adolescent with Turner syndrome mosaicism and impending premature ovarian failure. Fertil Steril. 2010;94(2):753 e15–9.

    Article  Google Scholar 

  9. Huang JY et al. Cryopreservation of ovarian tissue and in vitro matured oocytes in a female with mosaic Turner syndrome: case report. Hum Reprod. 2008;23(2):336–9.

    Article  CAS  PubMed  Google Scholar 

  10. Hewitt JK et al. Fertility in Turner syndrome. Clin Endocrinol (Oxf). 2013;79(5):606–14.

    Google Scholar 

  11. Hagen CP et al. Serum levels of anti-Mullerian hormone as a marker of ovarian function in 926 healthy females from birth to adulthood and in 172 Turner syndrome patients. J Clin Endocrinol Metab. 2010;95(11):5003–10.

    Article  CAS  PubMed  Google Scholar 

  12. Borgstrom B et al. Fertility preservation in girls with turner syndrome: prognostic signs of the presence of ovarian follicles. J Clin Endocrinol Metab. 2009;94(1):74–80.

    Article  PubMed  Google Scholar 

  13. Bernard V et al. Spontaneous fertility and pregnancy outcomes amongst 480 women with Turner syndrome. Hum Reprod. 2016;31(4):782–8.

    Article  PubMed  Google Scholar 

  14. Karnis MF et al. Risk of death in pregnancy achieved through oocyte donation in patients with Turner syndrome: a national survey. Fertil Steril. 2003;80(3):498–501.

    Article  PubMed  Google Scholar 

  15. Practice Committee of American Society For Reproductive Medicine. Increased maternal cardiovascular mortality associated with pregnancy in women with Turner syndrome. Fertil Steril. 2012;97(2):282–4.

    Google Scholar 

  16. Verp MS, Simpson JL. Abnormal sexual differentiation and neoplasia. Cancer Genet Cytogenet. 1987;25(2):191–218.

    Article  CAS  PubMed  Google Scholar 

  17. Kriplani A et al. Bilateral seminomas in a 45X/46XY mosaic with Turner’s phenotype: an unusual case of mixed gonadal dysgenesis. J Obstet Gynaecol Res. 2003;29(2):63–6.

    Article  PubMed  Google Scholar 

  18. El Moussaif N et al. 45, X/46, XY mosaicism: report of five cases and clinical review. Ann Endocrinol (Paris). 2011;72(3):239–43.

    Article  CAS  Google Scholar 

  19. Mazzanti L et al. Gonadoblastoma in Turner syndrome and Y-chromosome-derived material. Am J Med Genet A. 2005;135(2):150–4.

    Article  PubMed  Google Scholar 

  20. Mendes JR et al. Y-chromosome identification by PCR and gonadal histopathology in Turner’s syndrome without overt Y-mosaicism. Clin Endocrinol (Oxf). 1999;50(1):19–26.

    Article  CAS  Google Scholar 

  21. Cools M et al. Gonadal development and tumor formation at the crossroads of male and female sex determination. Sex Dev. 2011;5(4):167–80.

    Article  CAS  PubMed  Google Scholar 

  22. Looijenga LH et al. Tumor risk in disorders of sex development (DSD). Best Pract Res Clin Endocrinol Metab. 2007;21(3):480–95.

    Article  CAS  PubMed  Google Scholar 

  23. Hovatta O. Ovarian function and in vitro fertilization (IVF) in Turner syndrome. Pediatr Endocrinol Rev. 2012;9(Suppl 2):713–7.

    PubMed  Google Scholar 

  24. Scully RE. Gonadoblastoma; a gonadal tumor related to the dysgerminoma (seminoma) and capable of sex-hormone production. Cancer. 1953;6(3):455–63.

    Article  CAS  PubMed  Google Scholar 

  25. Visser JA et al. Anti-Mullerian hormone levels in girls and adolescents with Turner syndrome are related to karyotype, pubertal development and growth hormone treatment. Hum Reprod. 2013;28(7):1899–907.

    Article  CAS  PubMed  Google Scholar 

  26. Bojesen A, Juul S, Gravholt C. Prenatal and postnatal prevalence of Klinefelter syndrome: a national registry study. J Clin Endocrinol Metab. 2003;88:622–6.

    Article  CAS  PubMed  Google Scholar 

  27. Klinefelter syndrome. 2013. [cited 20 May 2014].

    Google Scholar 

  28. Krausz C, Chianese C. Genetic testing and counseling for male infertility. Curr Opin Endocrinol Diabetes Obes. 2014;21(3):244–50.

    Article  PubMed  Google Scholar 

  29. Mau-Holzmann U. Somatic chromosomal abnormalities in infertile men and women. Cytogenet Genome Res. 2005;111:317–36.

    Article  CAS  PubMed  Google Scholar 

  30. Rives N et al. The feasibility of fertility preservation in adolescents with Klinefelter syndrome. Hum Reprod. 2013;28(6):1468–79.

    Article  CAS  PubMed  Google Scholar 

  31. Koh E et al. Azoospermia factor and male infertility. Reprod Med Biol. 2010;9(3):129–39.

    Article  Google Scholar 

  32. De Braekeleer M, Dao TN. Cytogenetic studies in male infertility: a review. Hum Reprod. 1991;6(2):245–50.

    Article  CAS  PubMed  Google Scholar 

  33. Pryor JL et al. Microdeletions in the Y chromosome of infertile men. N Engl J Med. 1997;336(8):534–9.

    Article  CAS  PubMed  Google Scholar 

  34. Simoni M, Bakker E, Krausz C. EAA/EMQN best practice guidelines for molecular diagnosis of y-chromosomal microdeletions. State of the art 2004. Int J Androl. 2004;27(4):240–9.

    Article  CAS  PubMed  Google Scholar 

  35. Repping S et al. Recombination between palindromes P5 and P1 on the human Y chromosome causes massive deletions and spermatogenic failure. Am J Hum Genet. 2002;71(4):906–22.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lange J et al. Isodicentric Y chromosomes and sex disorders as byproducts of homologous recombination that maintains palindromes. Cell. 2009;138(5):855–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Brandell RA et al. AZFb deletions predict the absence of spermatozoa with testicular sperm extraction: preliminary report of a prognostic genetic test. Hum Reprod. 1998;13(1O):2812–5.

    Article  CAS  PubMed  Google Scholar 

  38. Kent-First MG et al. The incidence and possible relevance of Y-linked microdeletions in babies born after intracytoplasmic sperm injection and their infertile fathers. Mol Hum Reprod. 1996;2(12):943–50.

    Article  CAS  PubMed  Google Scholar 

  39. Huang N et al. A screen for genomic disorders of infertility identifies MAST2 duplications associated with nonobstructive azoospermia in humans. Biol Reprod. 2015;93(3):61.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lo Giacco D et al. Recurrent X chromosome-linked deletions: discovery of new genetic factors in male infertility. J Med Genet. 2014;51(5):340–4.

    Article  CAS  PubMed  Google Scholar 

  41. Sala C et al. Eleven X chromosome breakpoints associated with premature ovarian failure (POF) map to a 15-Mb YAC contig spanning Xq21. Genomics. 1997;40(1):123–31.

    Article  CAS  PubMed  Google Scholar 

  42. Sherman S. Premature ovarian failure in the fragile X syndrome. Am J Med Genet. 2000;97:189–94.

    Article  CAS  PubMed  Google Scholar 

  43. Kalz-Fuller B et al. Characterisation, phenotypic manifestations and X-inactivation pattern in 14 patients with X-autosome translocations. Clin Genet. 1999;55(5):362–6.

    Article  CAS  PubMed  Google Scholar 

  44. Schmidt M, Sart DD. Functional disomies of the X chromosome influence the cell selection and hence the X inactivation pattern in females with balanced X-autosome translocations: a review of 122 cases. Am J Med Genet. 1992;42(2):161–9.

    Article  CAS  PubMed  Google Scholar 

  45. Therman E, Laxova R, Susman B. The critical region on the human Xq. Hum Genet. 1990;85(5):455–61.

    Article  CAS  PubMed  Google Scholar 

  46. Sarto GE, Therman E, Patau K. X inactivation in man: a woman with t(Xq--;12q+). Am J Hum Genet. 1973;25(3):262–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Moyses-Oliveira M et al. Genetic mechanisms leading to primary amenorrhea in balanced X-autosome translocations. Fertil Steril. 2015;103(5):1289–96. e2

    Article  CAS  PubMed  Google Scholar 

  48. Chen CP et al. Primary ovarian failure in a mentally retarded woman with a de novo unbalanced X;autosome translocation. Fertil Steril. 2006;86(5):1514 e1–2.

    Article  Google Scholar 

  49. Chen CP et al. Array CGH characterization of an unbalanced X-autosome translocation associated with Xq27.2-qter deletion, 11q24.3-qter duplication and Xq22.3-q27.1 duplication in a girl with primary amenorrhea and mental retardation. Gene. 2014;535(1):88–92.

    Article  CAS  PubMed  Google Scholar 

  50. Pleskacova J et al. Tumor risk in disorders of sex development. Sex Dev. 2010;4(4–5):259–69.

    Article  CAS  PubMed  Google Scholar 

  51. Deans R et al. Timing of gonadectomy in adult women with complete androgen insensitivity syndrome (CAIS): patient preferences and clinical evidence. Clin Endocrinol (Oxf). 2012;76(6):894–8.

    Article  Google Scholar 

  52. MacLaughlin DT, Donahoe PK. Sex determination and differentiation. N Engl J Med. 2004;350(4):367–78.

    Article  CAS  PubMed  Google Scholar 

  53. Douglas G et al. Consensus in guidelines for evaluation of DSD by the texas children’s hospital multidisciplinary gender medicine team. Int J Pediatr Endocrinol. 2010;2010:919707.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Luo X, Ikeda Y, Parker KL. A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell. 1994;77(4):481–90.

    Article  CAS  PubMed  Google Scholar 

  55. Biason-Lauber A, Schoenle EJ. Apparently normal ovarian differentiation in a prepubertal girl with transcriptionally inactive steroidogenic factor 1 (NR5A1/SF-1) and adrenocortical insufficiency. Am J Hum Genet. 2000;67(6):1563–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Achermann JC et al. A mutation in the gene encoding steroidogenic factor-1 causes XY sex reversal and adrenal failure in humans. Nat Genet. 1999;22(2):125–6.

    Article  CAS  PubMed  Google Scholar 

  57. Correa RV et al. A microdeletion in the ligand binding domain of human steroidogenic factor 1 causes XY sex reversal without adrenal insufficiency. J Clin Endocrinol Metab. 2004;89(4):1767–72.

    Article  CAS  PubMed  Google Scholar 

  58. Lourenco D et al. Mutations in NR5A1 associated with ovarian insufficiency. N Engl J Med. 2009;360(12):1200–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bashamboo A et al. Human male infertility associated with mutations in NR5A1 encoding steroidogenic factor 1. Am J Hum Genet. 2010;87(4):505–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sekido R, Lovell-Badge R. Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer. Nature. 2008;453(7197):930–4.

    Article  CAS  PubMed  Google Scholar 

  61. Cameron FJ, Sinclair AH. Mutations in SRY and SOX9: testis-determining genes. Hum Mutat. 1997;9(5):388–95.

    Article  CAS  PubMed  Google Scholar 

  62. Harley VR et al. Defective importin beta recognition and nuclear import of the sex-determining factor SRY are associated with XY sex-reversing mutations. Proc Natl Acad Sci U S A. 2003;100(12):7045–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hossain A, Saunders GF. The human sex-determining gene SRY is a direct target of WT1. J Biol Chem. 2001;276(20):16817–23.

    Article  CAS  PubMed  Google Scholar 

  64. Wagner KD et al. The Wilms' tumor suppressor Wt1 encodes a transcriptional activator of the class IV POU-domain factor Pou4f2 (Brn-3b). Gene. 2003;305(2):217–23.

    Article  CAS  PubMed  Google Scholar 

  65. Cox JJ et al. A SOX9 duplication and familial 46, XX developmental testicular disorder. N Engl J Med. 2011;364(1):91–3.

    Article  CAS  PubMed  Google Scholar 

  66. Qin Y, Bishop CE. Sox9 is sufficient for functional testis development producing fertile male mice in the absence of Sry. Hum Mol Genet. 2005;14(9):1221–9.

    Article  CAS  PubMed  Google Scholar 

  67. Wagner T et al. Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell. 1994;79(6):1111–20.

    Article  CAS  PubMed  Google Scholar 

  68. McCann-Crosby B et al. State of the art review in gonadal dysgenesis: challenges in diagnosis and management. Int J Pediatr Endocrinol. 2014;2014(1):4.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Martinerie L et al. Impaired puberty, fertility, and final stature in 45, X/46, XY mixed gonadal dysgenetic patients raised as boys. Eur J Endocrinol. 2012;166(4):687–94.

    Article  CAS  PubMed  Google Scholar 

  70. Cools M et al. Managing the risk of germ cell tumourigenesis in disorders of sex development patients. Endocr Dev. 2014;27:185–96.

    PubMed  Google Scholar 

  71. Gourlay WA et al. Gonadal tumors in disorders of sexual differentiation. Urology. 1994;43(4):537–40.

    Article  CAS  PubMed  Google Scholar 

  72. Rocha VB et al. Complete gonadal dysgenesis in clinical practice: the 46, XY karyotype accounts for more than one third of cases. Fertil Steril. 2011;96(6):1431–4.

    Article  PubMed  Google Scholar 

  73. Dumic M et al. Bilateral gonadoblastoma in a 9-month-old infant with 46, XY gonadal dysgenesis. J Endocrinol Invest. 1993;16(4):291–3.

    Article  CAS  PubMed  Google Scholar 

  74. Fallat ME, Donahoe PK. Intersex genetic anomalies with malignant potential. Curr Opin Pediatr. 2006;18(3):305–11.

    Article  PubMed  Google Scholar 

  75. Michala L et al. Swyer syndrome: presentation and outcomes. BJOG. 2008;115(6):737–41.

    Article  CAS  PubMed  Google Scholar 

  76. Wiersma R. The clinical spectrum and treatment of ovotesticular disorder of sexual development. Adv Exp Med Biol. 2011;707:101–3.

    Article  CAS  PubMed  Google Scholar 

  77. Hughes IA et al. Consensus statement on management of intersex disorders. J Pediatr Urol. 2006;2(3):148–62.

    Article  CAS  PubMed  Google Scholar 

  78. Abaci A, Catli G, Berberoglu M. Gonadal malignancy risk and prophylactic gonadectomy in disorders of sexual development. J Pediatr Endocrinol Metab. 2015;28(9–10):1019–27.

    CAS  PubMed  Google Scholar 

  79. Sugawara T et al. Human steroidogenic acute regulatory protein: functional activity in COS-1 cells, tissue-specific expression, and mapping of the structural gene to 8p11.2 and a pseudogene to chromosome 13. Proc Natl Acad Sci U S A. 1995;92(11):4778–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Clark BJ et al. The purification, cloning, and expression of a novel luteinizing hormone-induced mitochondrial protein in MA-10 mouse Leydig tumor cells. characterization of the steroidogenic acute regulatory protein (StAR). J Biol Chem. 1994;269(45):28314–22.

    CAS  PubMed  Google Scholar 

  81. Bose HS et al. The pathophysiology and genetics of congenital lipoid adrenal hyperplasia. N Engl J Med. 1996;335(25):1870–8.

    Article  CAS  PubMed  Google Scholar 

  82. Sahakitrungruang T et al. Partial defect in the cholesterol side-chain cleavage enzyme P450scc (CYP11A1) resembling nonclassic congenital lipoid adrenal hyperplasia. J Clin Endocrinol Metab. 2011;96(3):792–8.

    Article  CAS  PubMed  Google Scholar 

  83. Kim CJ et al. Severe combined adrenal and gonadal deficiency caused by novel mutations in the cholesterol side chain cleavage enzyme, P450scc. J Clin Endocrinol Metab. 2008;93(3):696–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Choi JH, Kim GH, Yoo HW. Recent advances in biochemical and molecular analysis of congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Ann Pediatr Endocrinol Metab. 2016;21(1):1–6.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Biglieri EG. 17 alpha-Hydroxylase deficiency: 1963–1966. J Clin Endocrinol Metab. 1997;82(1):48–50.

    CAS  PubMed  Google Scholar 

  86. Martin RM et al. P450c17 deficiency in Brazilian patients: biochemical diagnosis through progesterone levels confirmed by CYP17 genotyping. J Clin Endocrinol Metab. 2003;88(12):5739–46.

    Article  CAS  PubMed  Google Scholar 

  87. Rheaume E et al. Structure and expression of a new complementary DNA encoding the almost exclusive 3 beta-hydroxysteroid dehydrogenase/delta 5-delta 4-isomerase in human adrenals and gonads. Mol Endocrinol. 1991;5(8):1147–57.

    Article  CAS  PubMed  Google Scholar 

  88. Rheaume E et al. Congenital adrenal hyperplasia due to point mutations in the type II 3 beta-hydroxysteroid dehydrogenase gene. Nat Genet. 1992;1(4):239–45.

    Article  CAS  PubMed  Google Scholar 

  89. Miller WL. Congenital adrenal hyperplasia. N Engl J Med. 1986;314(20):1321–2.

    CAS  PubMed  Google Scholar 

  90. Peterson RE et al. Male pseudohermaphroditism due to multiple defects in steroid-biosynthetic microsomal mixed-function oxidases. A new variant of congenital adrenal hyperplasia. N Engl J Med. 1985;313(19):1182–91.

    Article  CAS  PubMed  Google Scholar 

  91. Fluck CE et al. Mutant P450 oxidoreductase causes disordered steroidogenesis with and without Antley-Bixler syndrome. Nat Genet. 2004;36(3):228–30.

    Article  PubMed  Google Scholar 

  92. McGlaughlin KL et al. Spectrum of Antley-Bixler syndrome. J Craniofac Surg. 2010;21(5):1560–4.

    Article  PubMed  Google Scholar 

  93. Reardon W et al. Evidence for digenic inheritance in some cases of Antley-Bixler syndrome? J Med Genet. 2000;37(1):26–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. George MM et al. The clinical and molecular heterogeneity of 17betaHSD-3 enzyme deficiency. Horm Res Paediatr. 2010;74(4):229–40.

    Article  CAS  PubMed  Google Scholar 

  95. Eckstein B et al. The nature of the defect in familial male pseudohermaphroditism in Arabs of Gaza. J Clin Endocrinol Metab. 1989;68(2):477–85.

    Article  CAS  PubMed  Google Scholar 

  96. Okeigwe I, Kuohung W. 5-Alpha reductase deficiency: a 40-year retrospective review. Curr Opin Endocrinol Diabetes Obes. 2014;21(6):483–7.

    Article  CAS  PubMed  Google Scholar 

  97. Mendoza N, Motos MA. Androgen insensitivity syndrome. Gynecol Endocrinol. 2013;29(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  98. Han TS et al. Comparison of bone mineral density and body proportions between women with complete androgen insensitivity syndrome and women with gonadal dysgenesis. Eur J Endocrinol. 2008;159(2):179–85.

    Article  CAS  PubMed  Google Scholar 

  99. Bertelloni S, Baroncelli GI, Mora S. Bone health in disorders of sex differentiation. Sex Dev. 2010;4(4–5):270–84.

    Article  CAS  PubMed  Google Scholar 

  100. Olsen MM et al. Gonadoblastoma in infancy: indications for early gonadectomy in 46XY gonadal dysgenesis. J Pediatr Surg. 1988;23(3):270–1.

    Article  CAS  PubMed  Google Scholar 

  101. Petroli RJ et al. Preserved fertility in a patient with gynecomastia associated with the p.Pro695Ser mutation in the androgen receptor. Sex Dev. 2014;8(6):350–5.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Goetsch, A.L., Kimelman, D., Woodruff, T.K. (2017). Disorders of the Sex Chromosomes and Sexual Development. In: Fertility Preservation and Restoration for Patients with Complex Medical Conditions. Springer, Cham. https://doi.org/10.1007/978-3-319-52316-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52316-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52315-6

  • Online ISBN: 978-3-319-52316-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics