On the Interpretation of Probabilities in Generalized Probabilistic Models

  • Federico HolikEmail author
  • Sebastian Fortin
  • Gustavo Bosyk
  • Angelo Plastino
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10106)


We discuss generalized probabilistic models for which states not necessarily obey Kolmogorov’s axioms of probability. We study the relationship between properties and probabilistic measures in this setting, and explore some possible interpretations of these measures.


Quantum probability Generalized probabilistic models Interpretations of probability theory 



The Authors acknowledge CONICET and UNLP (Argentina). We are grateful to the anonymous reviewers, whose comments have helped to improve the manuscript. This publication was also made possible through the support of grant 57919 from the John Templeton Foundation. The opinions expressed in this publication are those of the authors and do not necessarily reflect the views of the John Templeton Foundation. FH also is grateful to the participants of the Conference “Quantum interactions - 2016” (San Franciso, July 2016), for the stimulating and lively discussions that have enriched this work.


  1. 1.
    Bengtsson, I., Zyczkowski, K.: Geometry of Quantum States: An Introduction to Quantum Entanglement. Cambridge University Press, Cambridge (2006)CrossRefzbMATHGoogle Scholar
  2. 2.
    Holik, F., Plastino, A., Saenz, M.: Natural information measures in Cox’ approach for contextual probabilistic theories. Quantum Inf. Comput. 16(1 & 2), 0115–0133 (2016)MathSciNetGoogle Scholar
  3. 3.
    Rocchi, P.: Janus-faced Probability. Springer, Cham (2014)CrossRefzbMATHGoogle Scholar
  4. 4.
    Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Ann. Math. 37, 823–843 (1936)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Gudder, S.P.: Stochastic Methods in Quantum Mechanics, North Holland, New York (1979)Google Scholar
  6. 6.
    Dalla Chiara, M.L., Giuntini, R., Greechie, R.: Reasoning in Quantum Theory. Kluwer Academic Pubulisher, Dordrecht (2004)CrossRefzbMATHGoogle Scholar
  7. 7.
    Rédei, M.: Quantum Logic in Algebraic Approach. Kluwer Academic Publishers, Dordrecht (1998)CrossRefzbMATHGoogle Scholar
  8. 8.
    Rédei, M., Summers, S.: Studies in history and philosophy of science part B: studies in history and philosophy of modern physics. Probab. Quantum Mech. 38(2), 390–417 (2007)Google Scholar
  9. 9.
    Davies, E., Lewis, J.: An operational approach to quantum probability. Commun. Math. Phys. 17, 239–260 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Srinivas, M.: Foundations of a quantum probability theory. J. Math. Phys. 16(8), 1672–1685 (1975)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Anastopoulos, C.: Annals Of Physics 313, 368–382 (2004)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Rau, J.: On the relation between quantum mechanical probabilities and event frequencies. Ann. Phys. 324, 2622–2637 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kolmogorov, A.N.: Foundations of Probability Theory. Springer, Berlin (1933)zbMATHGoogle Scholar
  14. 14.
    Cox, R.T.: Probability, frequency, and reasonable expectation. Am. J. Phys. 14, 1–13 (1946)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Cox, R.T.: The Algebra of Probable Inference. The Johns Hopkins Press, Baltimore (1961)zbMATHGoogle Scholar
  16. 16.
    Boole, G.: An Investigation of the Laws of Thought. Macmillan, London (1854)zbMATHGoogle Scholar
  17. 17.
    Knuth, K.H.: Deriving laws from ordering relations. In: Erickson, G.J., Zhai, Y. (eds.) Proceedings of 23rd International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, American Institute of Physics, New York, NY, USA, pp. 204-235 (2004)Google Scholar
  18. 18.
    Knuth, K.H. Measuring on lattices. In: Goggans, P., Chan, C.Y. (eds.) Proceedings of 23rd International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, American Institute of Physics, New York, NY, USA, Volume 707, pp. 132-144 (2004)Google Scholar
  19. 19.
    Knuth, K.H.: Valuations on lattices and their application to information theory. In: Proceedings of the 2006 IEEE World Congress on Computational Intelligence, Vancouver, Canada, July 2006Google Scholar
  20. 20.
    Knuth, K.H.: Lattice duality: the origin of probability and entropy. Neurocomputing 67C, 245–274 (2005)CrossRefGoogle Scholar
  21. 21.
    Goyal, P., Knuth, K.: Quantum theory and probability theory: their relationship and origin in symmetry. Symmetry 3, 171–206 (2011). doi: 10.3390/sym3020171 MathSciNetCrossRefGoogle Scholar
  22. 22.
    Goyal, P., Knuth, K.H., Skilling, J.: Origin of complex quantum amplitudes and Feynman’s rules. Phys. Rev. A 81, 022109 (2010)CrossRefGoogle Scholar
  23. 23.
    Kalmbach, G.: Orthomodular Lattices. Academic Press, San Diego (1983)zbMATHGoogle Scholar
  24. 24.
    Beltrametti, E.G., Cassinelli, G.: The Logic of Quantum Mechanics. Addison-Wesley, Reading (1981)zbMATHGoogle Scholar
  25. 25.
    Reed, M., Simon, B.: Methods of modern mathematical physics I: functional analysis. Academic Press, New York (1972)zbMATHGoogle Scholar
  26. 26.
    Holik, F., Massri, C., Plastino, A., Zuberman, L.: On the lattice structure of probability spaces in quantum mechanics. Int. J. Theor. Phys. 52(6), 1836–1876 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Bub, J.: Quantum computation from a quantum logical perspective. Quant. Inf. Process. 7, 281–296 (2007)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Holik, F., Bosyk, G.M., Bellomo, G.: Quantum information as a non-kolmogorovian generalization of Shannon’s theory. Entropy 17, 7349–7373 (2015). doi: 10.3390/e17117349 CrossRefGoogle Scholar
  29. 29.
    Holik, F., Plastino, A., Mechanics, Q.: A new turn in probability theory. In: Zoheir, E. (ed.) Contemporary Research in Quantum Systems. Nova Publishers, New York (2014)Google Scholar
  30. 30.
    Alfsen, E.M.: Compact Convex Sets and Boundary Integrals. Springer, Heidelberg (1971)CrossRefzbMATHGoogle Scholar
  31. 31.
    Barnum, H., Duncan, R., Wilce, A.: Symmetry, compact closure and dagger compactness for categories of convex operational models. J. Philos. Logic 42, 501–523 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Stubbe, I., Steirteghem, B.V.: Propositional systems, Hilbert lattices and generalized Hilbert spaces. In: Engesser, K., Gabbay, D.M., Lehmann, D. (eds.) Handbook Of Quantum Logic and Quantum Structures: Quantum Structures (2007)Google Scholar
  33. 33.
    Barnum, H., Barret, J., Leifer, M., Wilce, A.: Generalized no-broadcasting theorem. Phys. Rev. Lett. 99, 240501 (2007)CrossRefGoogle Scholar
  34. 34.
    Barnum, H., Wilce, A.: Information processing in convex operational theories. Electron. Not. Theor. Comput. Sci. 270(1), 3–15 (2011)CrossRefzbMATHGoogle Scholar
  35. 35.
    Gleason, A.: Measures on the closed subspaces of a Hilbert space. J. Math. Mech. 6, 885–893 (1957)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Buhagiar, D., Chetcuti, E., Dvurečenskij, A.: On Gleason’s theorem without Gleason. Found. Phys. 39, 550–558 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Holik, F., Saenz, M., Plastino, A.: A discussion on the origin of quantum probabilities. Ann. Phys. 340(1), 293–310 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Holik, F., Plastino, A., Saenz, M.: Natural information measures for contextual probabilistic models. Quantum Inf. Comput. 16(1 & 2), 0115–0133 (2016)MathSciNetGoogle Scholar
  39. 39.
    Svozil, K.: Quantum Logic. Springer, Verlag (1998)zbMATHGoogle Scholar
  40. 40.
    Svozil, K., Tkadlec, J.: Greechie diagrams, nonexistence of measures in quantum logics, and Kochen–Specker-type constructions. J. Math. Phys. 37, 5380–5401 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Doring, A.: Kochen-Specker theorem for von neumann algebras. Int. J. Theor. Phys. 44(2) (2005)Google Scholar
  42. 42.
    Smith, D.: Orthomodular Bell-Kochen-Specker theorem. Int. J. Theor. Phys. 43(10) (2004)Google Scholar
  43. 43.
    Murray, F.J., von Neumann, J.: On rings of operators. Ann. Math. 37, 116–229 (1936)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Murray, F.J., von Neumann, J.: On rings of operators II. Trans. Am. Math. Soc. 41, 208–248 (1937)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    von Neumann, J.: On rings of operators III. Ann. Math. 41, 94–161 (1940)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Murray, F.J., von Neumann, J.: On rings of operators IV. Ann. Math. 44, 716–808 (1943)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Holik, F.: Logic, geometry and probability theory. SOP Trans. Thoer. Phys. 1, 128–137 (2014)CrossRefGoogle Scholar
  48. 48.
    Halvorson, H., Müger, M.: Algebraic Quantum Field Theory. In: Butterfield, J.B., Earman, J.E. (eds.) Philosophy of Physics, Elsevier, Amsterdam, The Netherlands, pp. 731–922 (2006)Google Scholar
  49. 49.
    Yngvason, J.: The role of type III factors in quantum field theory. Rep. Math. Phys. 55, 135–147 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics: Volumes 1 and 2. Springer, Heidelberg (2012)Google Scholar
  51. 51.
    Feynman, R.P.: The concept of probability in quantum mechanics. In: Proceedings of Second Berkeley Symposium on Mathethical Statistical and Probability, University of California Press, pp. 533–541 (1951)Google Scholar
  52. 52.
    da Costa, N., Lombardi, O., Lastir, M.: A modal ontology of properties for quantum mechanics. Synthese 190(17), 3671–3693 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Domenech, G., Holik, F., Massri, C.: A quantum logical and geometrical approach to the study of improper mixtures. J. Math. Phyys. 51(5), 052108 (2010)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Federico Holik
    • 1
    Email author
  • Sebastian Fortin
    • 2
  • Gustavo Bosyk
    • 1
  • Angelo Plastino
    • 1
  1. 1.National University La Plata and CONICET IFLP-CCTLa PlataArgentina
  2. 2.University of Buenos Aires - CONICETBuenos AiresArgentina

Personalised recommendations