Skip to main content

Graded Vector Representations of Immunoglobulins Produced in Response to West Nile Virus

  • Conference paper
  • First Online:
Quantum Interaction (QI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10106))

Included in the following conference series:

Abstract

Semantic vector models generate high-dimensional vector representations of words from their occurrence statistics across large corpora of electronic text. In these models, an occurrence of a word or number is treated as a discrete event, including numerical measurements of continuous properties. Furthermore, the sequence in which words occur is often ignored. In earlier work we have developed approaches to address these limitations, using graded demarcator vectors to represent measured distances in high-dimensional space. This permits incorporation of continuous properties, such as the position of a character within a term or a year of birth, into semantic vector models. In this paper we extend this work by developing a novel representational approach for protein sequences, in which both the positions and the properties of the amino acid components of protein sequences are represented using graded vectors. Evaluation on a set of around 100,000 immunoglobulin receptor sequences derived from subjects recently infected with West Nile Virus (WNV) suggests that encoding positions and properties using graded vectors increases the similarity between immunoglobulin receptor sequences produced by cells from ancestral lines known to have developed in response to WNV, relative to those from other cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A similar approach, with interpolation between random matrices rather than random vectors, has recently been proposed as a way to represent the positions of pixels within images [25].

  2. 2.

    With binary vectors, superposition occcurs probabilistically - if \(D(\alpha )\) has a 1 as its first element and \(D(\omega )\) does not, \(D(p_1)\) is generated with a 0.8 probability of a one in this position.

  3. 3.

    This corresponds to the cosine metric if binary vectors are treated as vectors in {1,−1} not {1,0}. For example, \(1-(2/4)*\mathrm{HD}(1110, 1111) = 0.5\), and cos((0.5, 0.5, 0.5, −0.5), (0.5, 0.5, 0.5, 0.5)) = 0.5 (with 0.5 for normalized vector components after division by \(\sqrt{4}\)).

References

  1. Clark, S., Pulman, S.: Combining symbolic, distributional models of meaning. In: AAAI Spring Symposium: Quantum Interaction, pp. 52–55 (2007)

    Google Scholar 

  2. Widdows, D., Cohen, T.: Graded semantic vectors: an approach to representing graded quantities in generalized quantum models. In: Atmanspacher, H., Filk, T., Pothos, E. (eds.) QI 2015. LNCS, vol. 9535, pp. 231–244. Springer, Heidelberg (2016). doi:10.1007/978-3-319-28675-4_18

    Chapter  Google Scholar 

  3. Bohm, D.: Quantum Theory. Prentice-Hall, New York (1951). Republished by Dover, 1989

    Google Scholar 

  4. Cohen, T., Widdows, D., Wahle, M., Schvaneveldt, R.: Orthogonality and orthography: introducing measured distance into semantic space. In: Atmanspacher, H., Haven, E., Kitto, K., Raine, D. (eds.) QI 2013. LNCS, vol. 8369, pp. 34–46. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54943-4_4

    Chapter  Google Scholar 

  5. Kleinstein, S.H.: Getting started in computational immunology. PLoS Comput. Biol. 4(8), e1000128 (2008)

    Article  Google Scholar 

  6. Benichou, J., Ben-Hamo, R., Louzoun, Y., Efroni, S.: Rep-seq: uncovering the immunological repertoire through next-generation sequencing. Immunology 135(3), 183–191 (2012)

    Article  Google Scholar 

  7. Durbin, R., Eddy, S.R., Krogh, A., Mitchison, G.: Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  8. Tsioris, K., Gupta, N.T., Ogunniyi, A.O., Zimnisky, R.M., Qian, F., Yao, Y., Wang, X., Stern, J.N., Chari, R., Briggs, A.W., et al.: Neutralizing antibodies against West Nile virus identified directly from human B cells by single-cell analysis and next generation sequencing. Integrative Biol. 7(12), 1587–1597 (2015)

    Article  Google Scholar 

  9. Wu, Y.-C., Kipling, D., Leong, H.S., Martin, V., Ademokun, A.A., Dunn-Walters, D.K.: High-throughput immunoglobulin repertoire analysis distinguishes between human IgM memory and switched memory B-cell populations. Blood 116, 1070–1078 (2010)

    Article  Google Scholar 

  10. Ganapathiraju, M.K., Klein-Seetharaman, J., Balakrishnan, N., Reddy, R.: Characterization of protein secondary structure. IEEE Signal Process. Mag. 21(3), 78–87 (2004)

    Article  Google Scholar 

  11. Asgari, E., Mofrad, M.R.: Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS One 10(11), e0141287 (2015)

    Article  Google Scholar 

  12. Kanerva, P., Kristofersson, J., Holst, A.: Random indexing of text samples for latent semantic analysis. In: Proceedings of the 22nd Annual Conference of the Cognitive Science Society, vol. 1036 (2000)

    Google Scholar 

  13. Widdows, D., Cohen, T.: Reasoning with vectors: a continuous model for fast robust inference. Logic J. IGPL 23(2), jzu028 (2015)

    Article  MathSciNet  Google Scholar 

  14. Kanerva, P.: Sparse distributed memory. The MIT Press, Cambridge (1988)

    MATH  Google Scholar 

  15. Gayler, R.W.: Vector symbolic architectures answer Jackendoff’s challenges for cognitive neuroscience. In: Slezak, P. (ed.) ICCS/ASCS International Conference on Cognitive Science, University of New South Wales, Sydney, Australia, pp. 133–138, (2004)

    Google Scholar 

  16. Fodor, J.A., Pylyshyn, Z.W.: Connectionism and cognitive architecture: a critical analysis. Cognition 28(1–2), 3–71 (1988)

    Article  Google Scholar 

  17. Smolensky, P.: Tensor product variable binding and the representation of symbolic structures in connectionist systems. Artif. Intell. 46(1), 159–216 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  18. Plate, T.A.: Holographic Reduced Representations: Distributed Representation for Cognitive Structures. CSLI Publications, Stanford (2003)

    Google Scholar 

  19. Kanerva, P.: Binary spatter-coding of ordered k-tuples. In: Artificial Neural Networks–ICANN 1996, pp. 869–873 (1996)

    Google Scholar 

  20. Hannagan, T., Dupoux, E., Christophe, A.: Holographic string encoding. Cogn. Sci. 35(1), 79–118 (2011)

    Article  Google Scholar 

  21. Davis, C.J., Bowers, J.S.: Contrasting five different theories of letter position coding: Evidence from orthographic similarity effects. J. Exp. Psychol. Hum. Percept. Perform. 32(3), 535 (2006)

    Article  Google Scholar 

  22. Sahlgren, M., Holst, A., Kanerva, P.: Permutations as a means to encode order in word space. In: Proceedings of the 30th Annual Meeting of the Cognitive Science Society, CogSci 2008, 23–26 July, Washington D.C., USA (2008)

    Google Scholar 

  23. Jones, M.N., Kintsch, W., Mewhort, D.J.: High-dimensional semantic space accounts of priming. J. Mem. Lang. 55(4), 534–552 (2006)

    Article  Google Scholar 

  24. Cox, G.E., Kachergis, G., Recchia, G., Jones, M.N.: Toward a scalable holographic word-form representation. Behav. Res. Methods 43(3), 602–615 (2011)

    Article  Google Scholar 

  25. Gallant, S.I., Culliton, P.: Positional binding with distributed representations. In: ICIVC, Portsmouth, UK (2016)

    Google Scholar 

  26. Aerts, D., Czachor, M., De Moor, B.: Geometric analogue of holographic reduced representation. J. Math. Psychol. 53(5), 389–398 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Aerts, D., Czachor, M.: Quantum aspects of semantic analysis and symbolic artificial intelligence. J. Phys. A Math. Gen. 37, L123–L132 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kanerva, P.: Hyperdimensional computing: an introduction to computing in distributed representation with high-dimensional random vectors. Cogn. Comput. 1(2), 139–159 (2009)

    Article  Google Scholar 

  29. Crick, F., Barnett, L., Brenner, S., Watts-Tobin, R.J.: General nature of the genetic code for proteins. Nature 192, 1227–1232 (1961). Macmillan Journals Limited

    Article  Google Scholar 

  30. Lefranc, M.-P., Pommié, C., Ruiz, M., Giudicelli, V., Foulquier, E., Truong, L., Thouvenin-Contet, V., Lefranc, G.: IMGT unique numbering for immunoglobulin and T cell receptor variable domains and IG superfamily V-like domains. Dev. Comp. Immunol. 27(1), 55–77 (2003)

    Article  Google Scholar 

  31. Tsioris, K., Gupta, N.T., Ogunniyi, A.O., Zimnisky, R.M., Qian, F., Yao, Y., Wang, X., Stern, J.N.H., Chari, R., Briggs, A.W., Clouser, C.R., Vigneault, F., Church, G.M., Garcia, M.N., Murray, K.O., Montgomery, R.R., Kleinstein, S.H., Love, J.C.: Neutralizing antibodies against West Nile virus identified directly from human B cells by single-cell analysis and next generation sequencing. Integr. Biol. 7(12), 1587–1597 (2015)

    Article  Google Scholar 

  32. Gupta, N.T., Heiden, J.A.V., Uduman, M., Gadala-Maria, D., Yaari, G., Kleinstein, S.H.: Change-O: a toolkit for analyzing large-scale B cell immunoglobulin repertoire sequencing data: table 1. Bioinformatics 31, 3356–3358 (2015)

    Article  Google Scholar 

  33. Ogunniyi, A.O., Thomas, B.A., Politano, T.J., Varadarajan, N., Landais, E., Poignard, P., Walker, B.D., Kwon, D.S., Love, J.C.: Profiling human antibody responses by integrated single-cell analysis. Vaccine 32, 2866–2873 (2014)

    Article  Google Scholar 

  34. Wahle, M., Widdows, D., Herskovic, J.R., Bernstam, E.V., Cohen, T.: Deterministic binary vectors for efficient automated indexing of medline/pubmed abstracts. In: AMIA Annual Symposium Proceedings, American Medical Informatics Association, vol. 2012, p. 940 (2012)

    Google Scholar 

  35. Widdows, D., Cohen, T.: The semantic vectors package: new algorithms and public tools for distributional semantics. In: Fourth IEEE International Conference on Semantic Computing (ICSC) (2010)

    Google Scholar 

Download references

Acknowledgments

This research was supported by NIH/BD2K supplement R01LM011563-S1 and NIH/BD2K supplement R01AI104739-S1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trevor Cohen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Cohen, T., Widdows, D., Heiden, J.A.V., Gupta, N.T., Kleinstein, S.H. (2017). Graded Vector Representations of Immunoglobulins Produced in Response to West Nile Virus. In: de Barros, J., Coecke, B., Pothos, E. (eds) Quantum Interaction. QI 2016. Lecture Notes in Computer Science(), vol 10106. Springer, Cham. https://doi.org/10.1007/978-3-319-52289-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52289-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52288-3

  • Online ISBN: 978-3-319-52289-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics