Skip to main content

Robust Reconstruction of Accelerated Perfusion MRI Using Local and Nonlocal Constraints

  • Conference paper
  • First Online:
Book cover Reconstruction, Segmentation, and Analysis of Medical Images (RAMBO 2016, HVSMR 2016)

Abstract

Dynamic perfusion magnetic resonance (MR) imaging is a commonly used imaging technique that allows to measure the tissue perfusion in an organ of interest via assessment of various hemodynamic parameters such as blood flow, blood volume, and mean transit time. In this paper, we tackle the problem of recovering perfusion MR images from undersampled k-space data. We propose a novel reconstruction model that jointly penalizes spatial (local) incoherence on temporal differences obtained based on a reference image and the patch-wise (nonlocal) dissimilarities between spatio-temporal neighborhoods of MR sequence. Furthermore, we introduce an efficient iterative algorithm based on a proximal-splitting scheme that solves the joint minimization problem with fast convergence. We evaluate our method on dynamic susceptibility contrast (DSC)-MRI brain perfusion datasets as well as on a publicly available dataset of in-vivo breath-hold cardiac perfusion. Our proposed method demonstrates superior reconstruction performance over the state-of-the-art methods and yields highly accurate estimation of perfusion time profiles, which is very essential for the precise quantification of clinically relevant perfusion parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Available at: http://web.engr.illinois.edu/~cchen156/SSMRI.html.

References

  1. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imag. Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2, pp. 60–65 (2005)

    Google Scholar 

  3. Caballero, J., Price, A.N., Rueckert, D., Hajnal, J.: Dictionary learning and time sparsity for dynamic MR data reconstruction. IEEE Trans. Med. Imag. 33(4), 979–994 (2014)

    Article  Google Scholar 

  4. Chen, C., Li, Y., Axel, L., Huang, J.: Real time dynamic MRI with dynamic total variation. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8673, pp. 138–145. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10404-1_18

    Google Scholar 

  5. Chen, C., et al.: Preconditioning for accelerated iteratively reweighted least squares in structured sparsity reconstruction. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2713–2720 (2014)

    Google Scholar 

  6. Conturo, T.E., et al.: Arterial input functions for dynamic susceptibility contrast MRI: requirements and signal options. J. Mag. Reson. Imag. 22, 697–703 (2005)

    Article  Google Scholar 

  7. Coupé, P., Yger, P., Prima, S., Hellier, P., Kervrann, C., Barillot, C.: An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images. IEEE Trans. Med. Imag. 27(4), 425–441 (2008)

    Article  Google Scholar 

  8. Deshmane, A., Gulani, V., Griswold, M.A., Seiberlich, N.: Parallel MR imaging. J. Mag. Reson. Imag. 36(1), 55–72 (2012)

    Article  Google Scholar 

  9. Huang, J., Zhang, S., Metaxas, D.N.: Efficient MR image reconstruction for compressed MR imaging. Med. Imag. Anal. 15(5), 670–679 (2011)

    Article  Google Scholar 

  10. Lingala, S.G., Hu, Y., DiBella, E., Jacob, M.: Accelerated dynamic MRI exploiting sparsity and low-rank structure: k-t SLR. IEEE Trans. Med. Imag. 30(5), 1042–1054 (2011)

    Article  Google Scholar 

  11. Marks, R.J.: Alternating projections onto convex sets. In: Jansson, P.A. (ed.) Deconvolution of Images and Spectra, 2nd edn. Academic Press, Orlando (1996)

    Google Scholar 

  12. Protter, M., Elad, M., Takeda, H., Milanfar, P.: Generalizing the nonlocal-means to super-resolution reconstruction. IEEE Trans. Imag. Proc. 18(1), 36–51 (2009)

    Article  MathSciNet  Google Scholar 

  13. Raguet, H., Fadili, J., Peyré, G.: A generalized forward-backward splitting. SIAM J. Imag. Sci. 6(3), 1199–1226 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Trémoulhéac, B., Dikaios, N., Atkinson, D., Arridge, S.R.: Dynamic MR image reconstruction-separation from undersampled (k-t)-space via low-rank plus sparse prior. IEEE Trans. Med. Imag. 33(8), 1689–1701 (2014)

    Article  Google Scholar 

  15. Ulas, C., Gómez, P., Sperl, J.I., Preibisch, C., Menze, B.H.: Spatio-temporal MRI reconstruction by enforcing local and global regularity via dynamic total variation and nuclear norm minimization. In: IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp. 306–309 (2016)

    Google Scholar 

  16. Yang, Z., Jacob, M.: Nonlocal regularization of inverse problems: a unified variational framework. IEEE Trans. Imag. Proc. 22(8), 3192–3203 (2013)

    Article  Google Scholar 

  17. Yao, J., Xu, Z., Huang, X., Huang, J.: Accelerated dynamic MRI reconstruction with total variation and nuclear norm regularization. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9350, pp. 635–642. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24571-3_76

    Chapter  Google Scholar 

Download references

Acknowledegments

The research leading to these results has received funding from the European Union’s H2020 Framework Programme (H2020-MSCA-ITN-2014) under grant agreement no 642685 MacSeNet. We also thank Dr. Christine Preibisch (Neuroradiology, Klinikum rechts der Isar der TU München) for providing brain perfusion datasets.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cagdas Ulas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ulas, C., Gómez, P.A., Krahmer, F., Sperl, J.I., Menzel, M.I., Menze, B.H. (2017). Robust Reconstruction of Accelerated Perfusion MRI Using Local and Nonlocal Constraints. In: Zuluaga, M., Bhatia, K., Kainz, B., Moghari, M., Pace, D. (eds) Reconstruction, Segmentation, and Analysis of Medical Images. RAMBO HVSMR 2016 2016. Lecture Notes in Computer Science(), vol 10129. Springer, Cham. https://doi.org/10.1007/978-3-319-52280-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52280-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52279-1

  • Online ISBN: 978-3-319-52280-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics