Interactive Data Visualization Using Dimensionality Reduction and Similarity-Based Representations

  • P. Rosero-Montalvo
  • P. Diaz
  • J. A. Salazar-Castro
  • D. F. Peña-Unigarro
  • A. J. Anaya-Isaza
  • J. C. Alvarado-Pérez
  • R. Therón
  • D. H. Peluffo-OrdóñezEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10125)


This work presents a new interactive data visualization approach based on mixture of the outcomes of dimensionality reduction (DR) methods. Such a mixture is a weighted sum, whose weighting factors are defined by the user through a visual and intuitive interface. Additionally, the low-dimensional representation space produced by DR methods are graphically depicted using scatter plots powered via an interactive data-driven visualization. To do so, pairwise similarities are calculated and employed to define the graph to be drawn on the scatter plot. Our visualization approach enables the user to interactively combine DR methods while provided information about the structure of original data, making then the selection of a DR scheme more intuitive.


Data visualization Dimensionality reduction Pairwise similarity 


  1. 1.
    Peluffo-Ordóñez, D.H., Lee, J.A., Verleysen, M.: Short review of dimensionality reduction methods based on stochastic neighbour embedding. In: Villmann, T., Schleif, F.-M., Kaden, M., Lange, M. (eds.) Advances in Self-Organizing Maps and Learning Vector Quantization. AISC, vol. 295, pp. 65–74. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-07695-9_6 CrossRefGoogle Scholar
  2. 2.
    Borg, I., Groenen, P.J.: Modern Multidimensional Scaling: Theory and Applications. Springer Science & Business Media, New York (2005)zbMATHGoogle Scholar
  3. 3.
    Dai, W., Hu, P.: Research on personalized behaviors recommendation system based on cloud computing. Indones. J. Electr. Eng. Comput. Sci. 12, 1480–1486 (2013)Google Scholar
  4. 4.
    Ward, M.O., Grinstein, G., Keim, D.: Interactive Data Visualization: Foundations, Techniques, and Applications. CRC Press, Boca Raton (2010)zbMATHGoogle Scholar
  5. 5.
    Peluffo-Ordónez, D.H., Alvarado-Pérez, J.C., Lee, J.A., Verleysen, M., et al.: Geometrical homotopy for data visualization. In: European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2015) (2015)Google Scholar
  6. 6.
    Díaz, I., Cuadrado, A.A., Pérez, D., García, F.J., Verleysen, M.: Interactive dimensionality reduction for visual analytics. In: Proceedings of 22th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2014), pp. 183–188. Citeseer (2014)Google Scholar
  7. 7.
    Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15, 1373–1396 (2003)CrossRefzbMATHGoogle Scholar
  8. 8.
    Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)CrossRefGoogle Scholar
  9. 9.
    Lee, J.A., Renard, E., Bernard, G., Dupont, P., Verleysen, M.: Type 1 and 2 mixtures of Kullback-Leibler divergences as cost functions in dimensionality reduction based on similarity preservation. Neurocomputing 112, 92–108 (2013)CrossRefGoogle Scholar
  10. 10.
    Bertini, E., Lalanne, D.: Surveying the complementary role of automatic data analysis and visualization in knowledge discovery. In: Proceedings of ACM SIGKDD Workshop on Visual Analytics and Knowledge Discovery: Integrating Automated Analysis with Interactive Exploration, pp. 12–20. ACM (2009)Google Scholar
  11. 11.
    Peluffo-Ordóñez, D.H., Lee, J.A., Verleysen, M.: Generalized kernel framework for unsupervised spectral methods of dimensionality reduction. In: 2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM), pp. 171–177. IEEE (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • P. Rosero-Montalvo
    • 1
    • 2
  • P. Diaz
    • 2
    • 3
  • J. A. Salazar-Castro
    • 4
    • 5
  • D. F. Peña-Unigarro
    • 5
  • A. J. Anaya-Isaza
    • 6
    • 7
  • J. C. Alvarado-Pérez
    • 8
    • 9
  • R. Therón
    • 8
  • D. H. Peluffo-Ordóñez
    • 1
    Email author
  1. 1.Universidad Técnica del NorteIbarraEcuador
  2. 2.Universidad de las Fuerzas Armadas ESPESangolquíEcuador
  3. 3.Universidad Nacional de la PlataEnsenadaArgentina
  4. 4.Universidad Nacional Sede ManizalesManizalesColombia
  5. 5.Universidad de NariñoPastoColombia
  6. 6.Universidad SurcolombianaNeivaColombia
  7. 7.Universidad Tecnológica de PereiraPereiraColombia
  8. 8.Universidad de SalamancaSalamancaSpain
  9. 9.Coorporación Universitaria Autónoma de NariñoPastoColombia

Personalised recommendations