Preventing Coercion in E-Voting: Be Open and Commit

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10141)


We present a game-theoretic approach to coercion-resistance from the point of view of an honest election authority that chooses between various protection methods with different levels of resistance and different implementation costs. We give a simple game model of the election and propose a preliminary analysis. It turns out that, in the games that we look at, Stackelberg equilibrium for the society does not coincide with maxmin, and it is always more attractive to the society than Nash equilibrium. This suggests that the society is better off if the security policy is publicly announced, and the authorities commit to it.


Nash Equilibrium Mixed Strategy Pure Strategy Solution Concept Game Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Wojciech Jamroga acknowledges the support of the National Research Fund (FNR), Luxembourg, under the project GALOT (INTER/DFG/12/06), the support of the 7th Framework Programme of the European Union under the Marie Curie IEF project ReVINK (PIEF-GA-2012-626398), and the support of the National Centre for Research and Development (NCBR), Poland, under the PolLux project VoteVerif (POLLUX-IV/1/2016). Masoud Tabatabaei acknowledges the support of the National Research Fund Luxembourg under project GAIVS (AFR Code: 5884506).


  1. 1.
    Aditya, R., Lee, B., Boyd, C., Dawson, E.: An efficient mixnet-based voting scheme providing receipt-freeness. In: Katsikas, S., Lopez, J., Pernul, G. (eds.) TrustBus 2004. LNCS, vol. 3184, pp. 152–161. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-30079-3_16 CrossRefGoogle Scholar
  2. 2.
    Araújo, R., Rajeb, N., Robbana, R., Traoré, J., Youssfi, S.: Towards practical and secure coercion-resistant electronic elections. In: Heng, S.-H., Wright, R.N., Goi, B.-M. (eds.) CANS 2010. LNCS, vol. 6467, pp. 278–297. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-17619-7_20 CrossRefGoogle Scholar
  3. 3.
    Bonanno, G.: Game Theory (open access textbook with 165 solved exercises). CoRR, abs/1512.06808, 2015Google Scholar
  4. 4.
    Buldas, A., Mägi, T.: Practical security analysis of e-voting systems. In: Miyaji, A., Kikuchi, H., Rannenberg, K. (eds.) IWSEC 2007. LNCS, vol. 4752, pp. 320–335. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-75651-4_22 CrossRefGoogle Scholar
  5. 5.
    Delaune, S., Kremer, S., Ryan. M.: Coercion-resistance and receipt-freeness in electronic voting. In: 19th IEEE Computer Security Foundations Workshop, p. 12. IEEE (2006)Google Scholar
  6. 6.
    Dreier, J., Lafourcade, P., Lakhnec, Y.: A formal taxonomy of privacy in voting protocols. In: 2012 IEEE International Conference on Communications (ICC), pp. 6710–6715. IEEE (2012)Google Scholar
  7. 7.
    Gardner, R.W., Garera, S., Rubin, A.D.: Coercion resistant end-to-end voting. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 344–361. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-03549-4_21 CrossRefGoogle Scholar
  8. 8.
    Harsanyi, J.C., Selten, R.: A generalized Nash solution for two-person bargaining games with incomplete information. Manag. Sci. 18(5–part–2), 80–106 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Heather, J., Schneider, S.: A formal framework for modelling coercion resistance and receipt freeness. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 217–231. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-32759-9_19 CrossRefGoogle Scholar
  10. 10.
    Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In: Proceedings of the 2005 ACM Workshop on Privacy in the Electronic Society, pp. 61–70. ACM (2005)Google Scholar
  11. 11.
    Kiekintveld, C., Jain, M., Tsai, J., Pita, J., Tambe, M., Ordonez, F.: Computing optimal randomized resource allocations for massive security games. In: Proceedings of AAMAS, pp. 689–696. IFAAMAS (2009)Google Scholar
  12. 12.
    Korzhyk, D., Yin, Z., Kiekintveld, C., Conitzer, V., Tambe, M.: Stackelberg vs. Nash in security games: an extended investigation of interchangeability, equivalence, and uniqueness. J. Artif. Intell. Res. 41, 297–327 (2011)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Ku, W.-C., Ho, C.-M.: An e-voting scheme against bribe and coercion. In: 2004 IEEE International Conference on e-Technology, e-Commerce and e-Service EEE 2004, pp. 113–116. IEEE (2004)Google Scholar
  14. 14.
    Küsters, R., Truderung, T., Vogt, A.: A game-based definition of coercion-resistance and its applications. In: Proceedings of the 2010 23rd IEEE Computer Security Foundations Symposium, pp. 122–136. IEEE Computer Society (2010)Google Scholar
  15. 15.
    Küsters, R., Truderung, T., Vogt, A.: Verifiability, privacy, and coercion-resistance: new insights from a case study. In: 2011 IEEE Symposium on Security and Privacy (SP), pp. 538–553. IEEE (2011)Google Scholar
  16. 16.
    Lee, B., Boyd, C., Dawson, E., Kim, K., Yang, J., Yoo, S.: Providing receipt-freeness in mixnet-based voting protocols. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 245–258. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-24691-6_19 CrossRefGoogle Scholar
  17. 17.
    Lee, B., Kim, K.: Receipt-free electronic voting scheme with a tamper-resistant randomizer. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 389–406. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Leyton-Brown, K., Shoham, Y.: Essentials of Game Theory: A Concise, Multidisciplinary Introduction. Morgan and Claypool, San Rafael (2008)zbMATHGoogle Scholar
  19. 19.
    Li, N., Chen, L., Low, S.H.: Optimal Demand Response based on Utility Maximization in Power Networks. IEEE (2011)Google Scholar
  20. 20.
    Magkos, E., Burmester, M., Chrissikopoulos, V.: Receipt-freeness in large-scale elections without untappable channels. In: Schmid, B., Stanoevska-Slabeva, K., Tschammer, V. (eds.) Towards the E-Society, pp. 683–693. Springer, New york (2001)Google Scholar
  21. 21.
    Osborne, M., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge (1994)zbMATHGoogle Scholar
  22. 22.
    Pedrasa, M., Spooner, T., MacGill, I.: Coordinated scheduling of residential distributed energy resources to optimize smart home energy services. IEEE Trans. Smart Grid 1(2), 134–143 (2010)CrossRefGoogle Scholar
  23. 23.
    Peter, Y., Ryan, A.: The computer ate my vote. In: Boca, P., Bowen, J.P., Siddiqi, J. (eds.) Formal Methods: State of the Art and New Directions, pp. 147–184. Springer, London (2010)Google Scholar
  24. 24.
    Schläpfer, M., Haenni, R., Koenig, R., Spycher, O.: Efficient vote authorization in coercion-resistant internet voting. In: Kiayias, A., Lipmaa, H. (eds.) Vote-ID 2011. LNCS, vol. 7187, pp. 71–88. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-32747-6_5 CrossRefGoogle Scholar
  25. 25.
    Su, C.L., Kirschen, D.: Quantifying the effect of demand response on electricity markets. IEEE Trans. Power Syst. 24(3), 1199–1207 (2009)CrossRefGoogle Scholar
  26. 26.
    Tambe, M.: Security and Game Theory: Algorithms, Deployed Systems, Lessons Learned. Cambridge University Press, Cambridge (2011)CrossRefzbMATHGoogle Scholar
  27. 27.
    Weber, S.G., Araujo, R., Buchmann, J.: On coercion-resistant electronic elections with linear work. In: The Second International Conference on Availability, Reliability and Security, ARES 2007, pp. 908–916. IEEE (2007)Google Scholar
  28. 28.
    Xu, H.: The mysteries of security games: equilibrium computation becomes combinatorial algorithm design. In: Proceedings of SECMAS. IFAAMAS (2016)Google Scholar
  29. 29.
    Yin, Y., Vorobeychik, Y., An, B., Hazon, N.: Optimally protecting elections. In: Proceedings of SECMAS. IFAAMAS (2016)Google Scholar
  30. 30.
    Zhang, J., Fuller, J.D., Elhedhli, S.: A stochastic programming model for a day-ahead electricity market with real-time reserve shortage pricing. IEEE Trans. Power Syst. 25(2), 703–713 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Computer SciencePolish Academy of SciencesWarszawaPoland
  2. 2.Interdisciplinary Centre for Security and TrustUniversity of LuxembourgEsch-sur-alzetteLuxembourg

Personalised recommendations