Reduction of Workflow Nets for Generalised Soundness Verification

  • Hadrien Bride
  • Olga Kouchnarenko
  • Fabien PeureuxEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10145)


This paper proposes a reduction method to verify the generalised soundness of large workflows described as workflow nets–a suited class of Petri nets. The proposed static analysis method is based on the application of six novel reduction transformations that transform a workflow net into a smaller one while preserving generalised soundness. The soundness of the method is proved. As practical contributions, this paper presents convincing experimental results obtained using a dedicated tool, developed to validate and demonstrate the effectiveness, efficiency and scalability of this method over a large set of industrial workflow nets.


  1. 1.
    van der Aalst, W.M.: Three good reasons for using a Petri-net-based workflow management system. J. Inf. Process Integr. Enterprises 428, 161–182 (1997)Google Scholar
  2. 2.
    Dittrich, G.: Specification with nets. In: Pichler, F., Moreno-Diaz, R. (eds.) EUROCAST 1989. LNCS, vol. 410, pp. 111–124. Springer, Heidelberg (1990). doi: 10.1007/3-540-52215-8_10 CrossRefGoogle Scholar
  3. 3.
    van der Aalst, W.M.P., Barros, A.P., Hofstede, A.H.M., Kiepuszewski, B.: Advanced workflow patterns. In: Scheuermann, P., Etzion, O. (eds.) CoopIS 2000. LNCS, vol. 1901, pp. 18–29. Springer, Heidelberg (2000). doi: 10.1007/10722620_2 CrossRefGoogle Scholar
  4. 4.
    Suzuki, I., Murata, T.: A method for stepwise refinement and abstraction of Petri nets. J. Comput. Syst. Sci. 27(1), 51–76 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    van der Aalst, W.M., van Hee, K.M., ter Hofstede, A.H., Sidorova, N., Verbeek, H., Voorhoeve, M., Wynn, M.T.: Soundness of workflow nets: classification, decidability, and analysis. J. Formal Aspects Comput. 23(3), 333–363 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Lipton, R.: The reachability problem requires exponential space. Research report (Yale University. Department of Computer Science). Department of Computer Science, Yale University (1976)Google Scholar
  7. 7.
    Murata, T.: Petri nets: Properties, analysis and applications. IEEE 77(4), 541–580 (1989)CrossRefGoogle Scholar
  8. 8.
    Valmari, A.: The state explosion problem. In: Reisig, W., Rozenberg, G. (eds.) ACPN 1996. LNCS, vol. 1491, pp. 429–528. Springer, Berlin (1998). doi: 10.1007/3-540-65306-6_21 CrossRefGoogle Scholar
  9. 9.
    Mendling, J., Moser, M., Neumann, G., Verbeek, H.M.W., van Dongen, B.F., van der Aalst, W.M.P.: Faulty EPCs in the SAP reference model. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 451–457. Springer, Berlin (2006). doi: 10.1007/11841760_38 CrossRefGoogle Scholar
  10. 10.
    van Dongen, B.F., Jansen-Vullers, M.H., Verbeek, H.M.W., van der Aalst, W.M.: Verification of the SAP reference models using EPC reduction, state-space analysis, and invariants. Comput. Ind. 58(6), 578–601 (2007)CrossRefGoogle Scholar
  11. 11.
    Mendling, J., Verbeek, H.M.W., van Dongen, B.F., van der Aalst, W.M., Neumann, G.: Detection and prediction of errors in EPCs of the SAP reference model. Data Knowl. Eng. 64(1), 312–329 (2008)CrossRefGoogle Scholar
  12. 12.
    Fahland, D., Favre, C., Jobstmann, B., Koehler, J., Lohmann, N., Völzer, H., Wolf, K.: Instantaneous soundness checking of industrial business process models. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 278–293. Springer, Berlin (2009). doi: 10.1007/978-3-642-03848-8_19 CrossRefGoogle Scholar
  13. 13.
    Esparza, J., Hoffmann, P.: Reduction rules for colored workflow nets. In: Stevens, P., Wąsowski, A. (eds.) FASE 2016. LNCS, vol. 9633, pp. 342–358. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49665-7_20 CrossRefGoogle Scholar
  14. 14.
    Favre, C., Völzer, H., Müller, P.: Diagnostic information for control-flow analysis of workflow graphs (a.k.a. Free-Choice Workflow Nets). In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 463–479. Springer, Berlin (2016). doi: 10.1007/978-3-662-49674-9_27 CrossRefGoogle Scholar
  15. 15.
    Van Hee, K., Sidorova, N., Voorhoeve, M.: Generalised soundness of workflow nets is decidable. In: Cortadella, J., Reisig, W. (eds.) ICATPN 2004. LNCS, vol. 3099, pp. 197–215. Springer, Berlin (2004). doi: 10.1007/978-3-540-27793-4_12 CrossRefGoogle Scholar
  16. 16.
    Hee, K., Oanea, O., Sidorova, N., Voorhoeve, M.: Verifying generalized soundness of workflow nets. In: Virbitskaite, I., Voronkov, A. (eds.) PSI 2006. LNCS, vol. 4378, pp. 235–247. Springer, Berlin (2007). doi: 10.1007/978-3-540-70881-0_21 CrossRefGoogle Scholar
  17. 17.
    Ping, L., Hao, H., Jian, L.: On 1-soundness and soundness of workflow nets. In: Proceedings of the Third Workshop on Modelling of Objects, Components, and Agents Aarhus, Denmark, pp. 21–36 (2004)Google Scholar
  18. 18.
    Verbeek, H.M.W., Basten, T., van der Aalst, W.M.: Diagnosing workflow processes using woflan. Comput. J. 44(4), 246–279 (2001)CrossRefzbMATHGoogle Scholar
  19. 19.
    Yamaguchi, M., Yamaguchi, S., Tanaka, M.: A model checking method of soundness for workflow nets. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 92(11), 2723–2731 (2009)CrossRefGoogle Scholar
  20. 20.
    Holzmann, G.J.: The SPIN Model Checker Primer and Reference Manual, vol. 1003. Addison-Wesley, Reading (2004)Google Scholar
  21. 21.
    Barkaoui, K., Ben Ayed, R., Sbai, Z.: Workflow soundness verification based on structure theory of Petri nets. J. Comput. Inf. Sci. 5(1), 51–61 (2007)Google Scholar
  22. 22.
    Desel, J., Esparza, J.: Free Choice Petri Nets, vol. 40. Cambridge University Press, New York (2005)zbMATHGoogle Scholar
  23. 23.
    Lin, H., Zhao, Z., Li, H., Chen, Z.: A novel graph reduction algorithm to identify structural conflicts. In: Proceedings of the 35th Annual Hawaii International Conference on System Sciences HICSS 2002, 10 p. IEEE (2002)Google Scholar
  24. 24.
    Hichami, O.E., Al Achhab, M., Berrada, I., Oucheikh, R., El Mohajir, B.E.: An approach of optimisation and formal verification of workflow Petri nets. J. Theoret. Appl. Inf. Technol. 61(3), 486–495 (2014)Google Scholar
  25. 25.
    Berthelot, G.: Transformations and decompositions of nets. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) ACPN 1986. LNCS, vol. 254, pp. 359–376. Springer, Berlin (1987). doi: 10.1007/978-3-540-47919-2_13 CrossRefGoogle Scholar
  26. 26.
    Voorhoeve, M., Van der Aalst, W.: Ad-hoc workflow: problems and solutions. In: 1997 Proceedings of the Eighth International Workshop on Database and Expert Systems Applications, pp. 36–40. IEEE (1997)Google Scholar
  27. 27.
    Sadiq, W., Orlowska, M.E.: Analyzing process models using graph reduction techniques. Inf. Syst. 25(2), 117–134 (2000)CrossRefGoogle Scholar
  28. 28.
    Wynn, M.T., Verbeek, H., van der Aalst, W.M., ter Hofstede, A.H., Edmond, D.: Soundness-preserving reduction rules for reset workflow nets. Inf. Sci. 179(6), 769–790 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Sloan, R.H., Buy, U.: Reduction rules for time petri nets. Acta Informatica 33(7), 687–706 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Petri, C.A.: Kommunikation mit Automaten. Ph.D. thesis, Darmstadt University of Technology, Germany (1962)Google Scholar
  31. 31.
    van der Aalst, W.M.: The application of Petri nets to workflow management. J. Circuits Syst. Comput. 8(1), 21–66 (1998)CrossRefGoogle Scholar
  32. 32.
    Weber, M., Kindler, E.: The petri net markup language. In: Ehrig, H., Reisig, W., Rozenberg, G., Weber, H. (eds.) Petri Net Technology for Communication-Based Systems. LNCS, vol. 2472, pp. 124–144. Springer, Berlin (2003). doi: 10.1007/978-3-540-40022-6_7 CrossRefGoogle Scholar
  33. 33.
    Desel, J., Juhás, G., Lorenz, R., Neumair, C.: Modelling and validation with viptool. In: Aalst, W.M.P., Weske, M. (eds.) BPM 2003. LNCS, vol. 2678, pp. 380–389. Springer, Berlin (2003). doi: 10.1007/3-540-44895-0_26 CrossRefGoogle Scholar
  34. 34.
    Freytag, T.: Woped-workflow petri net designer. University of Cooperative Education (2005)Google Scholar
  35. 35.
    Van Hee, K., Oanea, O., Post, R., Somers, L., Van der Werf, J.M.: Yasper: a tool for workflow modeling and analysis. In: 2006 Sixth International Conference on Application of Concurrency to System Design ACSD 2006, pp. 279–282. IEEE (2006)Google Scholar
  36. 36.
    Bonet, P., Lladó, C.M., Puijaner, R., Knottenbelt, W.J.: PIPE v2.5: a Petri net tool for performance modelling. In: Proceedings of the 23rd Latin American Conference on Informatics (CLEI 2007), San Jose, Costa Rica, October 2007Google Scholar
  37. 37.
    Dumas, M., Hofstede, A.H.M.: UML activity diagrams as a workflow specification language. In: Gogolla, M., Kobryn, C. (eds.) UML 2001. LNCS, vol. 2185, pp. 76–90. Springer, Berlin (2001). doi: 10.1007/3-540-45441-1_7 CrossRefGoogle Scholar
  38. 38.
    Fahland, D.: Translating UML2 activity diagrams to Petri nets (2008)Google Scholar
  39. 39.
    Kiepuszewski, B., ter Hofstede, A.H.M., van der Aalst, W.M.: Fundamentals of control flow in workflows. Acta Informatica 39(3), 143–209 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Kordon, F., Garavel, H., Hillah, L.M., Hulin-Hubard, F., Chiardo, G., Hamez, A., Jezequel, L., Miner, A., Meijer, J., Paviot-Adet, E., Racordon, D., Rodriguez, C., Rohr, C., Srba, J., Thierry-Mieg, Y., Trinh, G., Wolf, K.: Models of the 2016 Edition of the Model Checking Contest, June 2016.
  41. 41.
    Lohmann, N., Verbeek, E., Dijkman, R.: Petri net transformations for business processes–a survey. In: Jensen, K., Aalst, W.M.P. (eds.) Transactions on Petri Nets and Other Models of Concurrency II. LNCS, vol. 5460, pp. 46–63. Springer, Berlin (2009). doi: 10.1007/978-3-642-00899-3_3 CrossRefGoogle Scholar
  42. 42.
    Verbeek, E., Van Der Aalst, W.M.P.: Woflan 2.0 A petri-net-based workflow diagnosis tool. In: Nielsen, M., Simpson, D. (eds.) ICATPN 2000. LNCS, vol. 1825, pp. 475–484. Springer, Heidelberg (2000). doi: 10.1007/3-540-44988-4_28 CrossRefGoogle Scholar
  43. 43.
    Bride, H., Kouchnarenko, O., Peureux, F.: Verifying modal workflow specifications using constraint solving. In: Albert, E., Sekerinski, E. (eds.) IFM 2014. LNCS, vol. 8739, pp. 171–186. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-10181-1_11 Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Hadrien Bride
    • 1
  • Olga Kouchnarenko
    • 1
  • Fabien Peureux
    • 1
    Email author
  1. 1.Institut FEMTO-ST–UMR CNRS 6174, University of Bourgogne Franche-ComtéBesançonFrance

Personalised recommendations