Advertisement

Solving Nonlinear Integer Arithmetic with MCSAT

  • Dejan JovanovićEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10145)

Abstract

We present a new method for solving nonlinear integer arithmetic constraints. The method relies on the MCSat approach to solving nonlinear constraints, while using branch and bound in a conflict-directed manner. We report encouraging experimental results where the new procedure outperforms state-of-the-art SMT solvers based on bit-blasting.

Keywords

Integer Variable Relevant Term Satisfiability Modulo Theory Satisfying Assignment Satisfiability Modulo Theory Solver 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Albrecht, R., Buchberger, B., Collins, G.E., Loos, R.: Computer Algebra: Symbolic and Algebraic Computation, vol. 4. Springer, Vienna (2012)Google Scholar
  2. 2.
    Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T., Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-22110-1_14 CrossRefGoogle Scholar
  3. 3.
    Barrett, C., Stump, A., Tinelli, C.: The satisfiability modulo theories library (SMT-LIB), vol. 15, pp. 18–52 (2010). www.SMT-LIB.org
  4. 4.
    Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories. Handb. Satisf. 185, 825–885 (2009)Google Scholar
  5. 5.
    Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In: Automata Theory and Formal Languages 2nd GI Conference Kaiserslautern, 20–23 May, pp. 134–183 (1975)Google Scholar
  6. 6.
    Corzilius, F., Kremer, G., Junges, S., Schupp, S., Ábrahám, E.: SMT-RAT: an open source C++ toolbox for strategic and parallel SMT solving. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 360–368. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-24318-4_26 CrossRefGoogle Scholar
  7. 7.
    de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-78800-3_24 CrossRefGoogle Scholar
  8. 8.
    Moura, L., Jovanović, D.: A model-constructing satisfiability calculus. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 1–12. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-35873-9_1 CrossRefGoogle Scholar
  9. 9.
    Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 737–744. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-08867-9_49 Google Scholar
  10. 10.
    Dutertre, B., Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006). doi: 10.1007/11817963_11 CrossRefGoogle Scholar
  11. 11.
    Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-24605-3_37 CrossRefGoogle Scholar
  12. 12.
    Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R., Zankl, H.: SAT solving for termination analysis with polynomial interpretations. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 340–354. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-72788-0_33 CrossRefGoogle Scholar
  13. 13.
    Giesl, J., et al.: Proving termination of programs automatically with AProVE. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol. 8562, pp. 184–191. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-08587-6_13 Google Scholar
  14. 14.
    Gomory, R.E.: Outline of an algorithm for integer solutions to linear programs. Bull. Am. Math. Soc. 64(5), 275–278 (1958)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Griggio, A.: A practical approach to satisfiability modulo linear integer arithmetic. J. Satisf. Boolean Model. Comput. 8, 1–27 (2012)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Heizmann, M., Hoenicke, J., Podelski, A.: Software model checking for people who love automata. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 36–52. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-39799-8_2 CrossRefGoogle Scholar
  17. 17.
    Jovanović, D.: SMT beyond DPLL(T): a new approach to theory solvers and theory combination. Ph.D. thesis, Courant Institute of Mathematical Sciences, New York (2012)Google Scholar
  18. 18.
    Jovanović, D., Barrett, C., De Moura, L.: The design and implementation of the model constructing satisfiability calculus. In: Formal Methods in Computer-Aided Design (FMCAD), pp. 173–180 (2013)Google Scholar
  19. 19.
    Jovanović, D., De Moura, L.: Solving non-linear arithmetic. In: International Joint Conference on Automated Reasoning, pp. 339–354 (2012)Google Scholar
  20. 20.
    Jovanović, D., De Moura, L.: Cutting to the chase: solving linear integer arithmetic. J. Autom. Reason. 51(1), 79–108 (2013)CrossRefzbMATHGoogle Scholar
  21. 21.
    King, T.: Effective algorithms for the satisfiability of quantifier-free formulas over linear real and integer arithmetic. Ph.D. thesis, Courant Institute of Mathematical Sciences, New York (2014)Google Scholar
  22. 22.
    Kremer, G., Corzilius, F., Ábrahám, E.: A generalised branch-and-bound approach and its application in SAT modulo nonlinear integer arithmetic. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2016. LNCS, vol. 9890, pp. 315–335. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-45641-6_21 CrossRefGoogle Scholar
  23. 23.
    Leike, J., Heizmann, M.: Geometric series as nontermination arguments for linear lasso programs. In: 14th International Workshop on Termination, p. 55 (2014)Google Scholar
  24. 24.
    Lopes, N.P., Aksoy, L., Manquinho, V., Monteiro, J.: Optimally solving the MCM problem using pseudo-boolean satisfiability (2011)Google Scholar
  25. 25.
    Matiyasevich, Y.V.: Hilbert’s Tenth Problem. The MIT Press, Cambridge (1993)zbMATHGoogle Scholar
  26. 26.
    Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an efficient SAT solver. In: Proceedings of the 38th Annual Design Automation Conference, pp. 530–535 (2001)Google Scholar
  27. 27.
    Papadimitriou, C.H.: On the complexity of integer programming. J. ACM 28(4), 765–768 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Robinson, G., Wos, L.: Paramodulation and theorem-proving in first-order theories with equality. Mach. Intell. 4, 135–150 (1969)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Tarski, A.: A decision method for elementary algebra and geometry. Technical report R-109, Rand Corporation (1951)Google Scholar
  30. 30.
    Weispfenning, V.: Quantifier elimination for real algebra - the quadratic case and beyond. Appl. Algebra Eng. Commun. Comput. 8(2), 85–101 (1997)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.SRI InternationalMenlo ParkUSA

Personalised recommendations