Skip to main content

A Terahertz Focal Plane Array Using Metamaterials in a CMOS Process

  • 1148 Accesses

Abstract

Metamaterial research has seen some unprecedented growth in the last two decades. Yet, compact and low-cost metamaterial devices are still infancy. Implementing the designs in a CMOS process will be a right step towards that goal although a huge engineering challenge. In this chapter, a method to implement a metamaterial based terahertz detector is demonstrated. A combination of electromagnetic and circuit simulations shows the viability of such a design, with the hope of serving as a reference for metamaterial designers who are interested in using the CMOS process.

Keywords

  • Compress Sense
  • Focal Plane Array
  • CMOS Process
  • Circuit Simulation
  • Differential Current

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-52219-7_6
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-52219-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 6.1
Fig. 6.2
Fig. 6.3
Fig. 6.4
Fig. 6.5
Fig. 6.6
Fig. 6.7
Fig. 6.8

References

  1. T.M. Korter, D.F. Plusquellic, Chem. Phys. Lett. 385 (1–2), 45 (2004).

    CrossRef  Google Scholar 

  2. N. Karpowicz, H. Zhong, C. Zhang, K.I. Lin, J.S. Hwang, J. Xu, X.C. Zhang, Appl. Phys. Lett. 86 (5), 054105 (2005)

    CrossRef  Google Scholar 

  3. K. Kawase, Y. Ogawa, Y. Watanabe, H. Inoue, Opt. Express 11 (20), 2549 (2003)

    CrossRef  Google Scholar 

  4. R.M. Woodward, V.P. Wallace, R.J. Pye, B.E. Cole, D.D. Arnone, E.H. Linfield, M. Pepper, J. Invest. Dermatol. 120 (1), 72 (2003)

    CrossRef  Google Scholar 

  5. D. Donoho, IEEE Trans. Inf. Theory 52 (4), 1289 (2006)

    MathSciNet  CrossRef  Google Scholar 

  6. E. Candes, J. Romberg, T. Tao, IEEE Trans. Inf. Theory 52 (2), 489 (2006)

    MathSciNet  CrossRef  Google Scholar 

  7. J.L. Hesler, T. Crowe, Responsivity and noise measurements of zero-bias Schottky diode detectors, in Proceedings of the 18th International Symposium on Space Terahertz Technology (Pasadena, 2007), pp. 89–92

    Google Scholar 

  8. P. Helisto et al., Antenna-coupled microbolometers for passive THz direct detection imaging arrays, in Proceedings of the 1st European Microwave Integrated Circuits Conference, (IEEE, 2006), pp. 35–38

    Google Scholar 

  9. A. Tessmann, I. Kallfass, A. Leuther, H. Massler, M. Schlechtweg, O. Ambacher, in Microwave Integrated Circuit Conference, 2008. EuMIC 2008. European (2008), pp. 210–213

    Google Scholar 

  10. S. Sankaran, K.K. O, IEEE Electron Device Lett. 26 (7), 492 (2005)

    Google Scholar 

  11. A. Theuwissen, in Solid State Circuits Conference, 2007. ESSCIRC 2007. 33rd European (2007), pp. 21–27

    Google Scholar 

  12. R.A. Barret, Broadband RF detector using FET. Patent no 4647848 (1987)

    Google Scholar 

  13. H-G. Krekels, B. Schiek, E. Menzel, Power detector with GaAs field effect transistors, in 22nd European Microwave Conference, vol. 1 (IEEE, 1992), pp. 174–179

    Google Scholar 

  14. W. Knap, F. Teppe, Y. Meziani, N. Dyakonova, J. Lusakowski, F. Boeuf, T. Skotnicki, D. Maude, S. Rumyantsev, M.S. Shur, Appl. Phys. Lett. 85 (4), 675 (2004)

    CrossRef  Google Scholar 

  15. R. Tauk, F. Teppe, S. Boubanga, D. Coquillat, W. Knap, Y.M. Meziani, C. Gallon, F. Boeuf, T. Skotnicki, C. Fenouillet-Beranger, D.K. Maude, S. Rumyantsev, M.S. Shur, Appl. Phys. Lett. 89 (25), 253511 (2006)

    CrossRef  Google Scholar 

  16. M. Dyakonov, M. Shur, IEEE Trans. Electron Devices 43 (3), 380 (1996)

    CrossRef  Google Scholar 

  17. U. Pfeiffer, E. Ojefors, in Solid-State Circuits Conference, 2008. ESSCIRC 2008. 34th European (2008), pp. 110–113

    Google Scholar 

  18. E. Ojefors, U. Pfeiffer, A. Lisauskas, H. Roskos, IEEE J. Solid-State Circuits 44 (7), 1968 (2009)

    CrossRef  Google Scholar 

  19. P.R. Gray, P.J. Hurst, S.H. Lewis, R.G. Meyer, Analysis and Design of Analog Integrated Circuits, 5th edn. (Wiley, New York, 2009)

    Google Scholar 

  20. N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla, Phys. Rev. Lett. 100 (20), 207402 (2008)

    CrossRef  Google Scholar 

  21. S. Rout, Active metamaterials for terahertz communication and imaging. Ph.D., Tufts University (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rout, S., Sonkusale, S. (2017). A Terahertz Focal Plane Array Using Metamaterials in a CMOS Process. In: Active Metamaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-52219-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52219-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52218-0

  • Online ISBN: 978-3-319-52219-7

  • eBook Packages: EngineeringEngineering (R0)