Skip to main content

Background Theory

  • 1115 Accesses

Abstract

This chapter reviews some of the fundamental electromagnetic principles for a basic understanding of metamaterials and metamaterials as terahertz modulator. Section 2.1 covers the basic electromagnetic properties of materials with non-positive dielectric parameters, permitivity (ε) and permeability (μ). In Sect. 2.2, basic Lorentz oscillator model for permitivity is developed to illustrate the anomalous dispersion behavior that is fundamental to the modulator design. Finally, the basic principle of wave modulation using metamaterials is formulated in Sect. 2.3.

Keywords

  • Constitutive Parameter
  • Drude Model
  • Negative Refractive Index
  • Lorentz Model
  • Negative Phase Velocity

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-52219-7_2
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-52219-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 2.1
Fig. 2.2
Fig. 2.3
Fig. 2.4
Fig. 2.5

References

  1. L.D. Landau, J.S. Bell, M.J. Kearsley, L.P. Pitaevskii, E.M. Lifshitz, J.B. Sykes, Electrodynamics of Continuous Media (Elsevier, Amsterdam, 1984)

    Google Scholar 

  2. J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1998)

    MATH  Google Scholar 

  3. J.A. Kong, Electromagnetic Wave Theory (Wiley, New York, 1990)

    Google Scholar 

  4. F. Wooten, Optical Properties of Solids (Academic, New York, 2013)

    Google Scholar 

  5. S.A. Ramakrishna, T.M. Grzegorczyk, Physics and Applications of Negative Refractive Index Materials (CRC Press, Boca Raton, 2008)

    CrossRef  Google Scholar 

  6. S. Tretyakov, Analytical Modeling in Applied Electromagnetics (Artech House, Norwood, 2003)

    MATH  Google Scholar 

  7. G.V. Eleftheriades, K.G. Balmain, Negative-Refraction Metamaterials: Fundamental Principles and Applications (Wiley, New York, 2005)

    CrossRef  Google Scholar 

  8. C. Caloz, T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications: The Engineering Approach (Wiley, New York, 2006)

    Google Scholar 

  9. N. Engheta, R.W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (Wiley, New York, 2006)

    CrossRef  Google Scholar 

  10. J. Pendry, Fundamentals and Applications of Negative Refraction in Metama (Princeton University Press, Princeton, 2008)

    MATH  Google Scholar 

  11. R.W. Ziolkowski, E. Heyman, Phys. Rev. E 64 (5), 056625 (2001)

    CrossRef  Google Scholar 

  12. M.W. McCall, A. Lakhtakia, W.S. Weiglhofer, Eur. J. Phys. 23 (3), 353 (2002)

    CrossRef  Google Scholar 

  13. V. Veselago, Soviet Phys. Uspekh 10 (4), 509 (1968)

    CrossRef  Google Scholar 

  14. I.V. Lindell, S.A. Tretyakov, K.I. Nikoskinen, S. Ilvonen, Microwave Opt. Tech. Lett. 31 (2), 129 (2001)

    CrossRef  Google Scholar 

  15. W.J. Padilla, D.N. Basov, D.R. Smith, Mat. Today 9 (7–8), 28 (2006)

    CrossRef  Google Scholar 

  16. D.J. Griffiths, Introduction to Electrodynamics (Pearson, Boston, 2013)

    Google Scholar 

  17. R. Liu, T.J. Cui, D. Huang, B. Zhao, D.R. Smith, Phys. Rev. E 76 (2), 026606 (2007)

    CrossRef  Google Scholar 

  18. D.R. Smith, Phys. Rev. E 81 (3), 036605 (2010)

    CrossRef  Google Scholar 

  19. B.J. Arritt, D.R. Smith, T. Khraishi, J. Appl. Phys. 109 (7), 073512 (2011)

    CrossRef  Google Scholar 

  20. W.J. Padilla, A.J. Taylor, C. Highstrete, M. Lee, R.D. Averitt, Phys. Rev. Lett. 96 (10), 107401 (2006)

    CrossRef  Google Scholar 

  21. H.T. Chen, W.J. Padilla, J.M.O. Zide, S.R. Bank, A.C. Gossard, A.J. Taylor, R.D. Averitt, Optics Lett. 32 (12), 1620 (2007)

    CrossRef  Google Scholar 

  22. H.T. Chen, W.J. Padilla, J.M.O. Zide, A.C. Gossard, A.J. Taylor, R.D. Averitt, Nature 444 (7119), 597 (2006)

    CrossRef  Google Scholar 

  23. H.T. Chen, J.F. O’Hara, A.K. Azad, A.J. Taylor, R.D. Averitt, D.B. Shrekenhamer, W.J. Padilla, Nat. Photon 2 (5), 295 (2008)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rout, S., Sonkusale, S. (2017). Background Theory. In: Active Metamaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-52219-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52219-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52218-0

  • Online ISBN: 978-3-319-52219-7

  • eBook Packages: EngineeringEngineering (R0)