Periodic and Symmetric Organisation of Meiotic Chromosomes

  • Kirti PrakashEmail author
Part of the Springer Theses book series (Springer Theses)


In this chapter single molecule localization microscopy (SMLM) is combined with analytical tools to describe the chromatin organisation of the pachytene chromosomes. DNA is found to be non-randomly distributed along the length of chromosome proteinaceous backbone, the synaptonemal complex (SC), in condensed clusters. Furthermore, chromatin is organized in spatially distinct functional clusters associated to specific epigenetic marks (Fig. 4.1).


Histone Modification Synaptonemal Complex Histone Mark Meiotic Chromosome Pachytene Stage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21(3):381–395CrossRefPubMedPubMedCentralGoogle Scholar
  2. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129(4):823–837CrossRefPubMedGoogle Scholar
  3. Baudat F, Imai Y, de Massy B (2013) Meiotic recombination in mammals: localization and regulation. Nat Rev Genet 14(11):794–806CrossRefPubMedGoogle Scholar
  4. Berríos S, Manieu C, López-Fenner J, Ayarza E, Page J, González M, Manterola M, Fernández-Donoso R (2014) Robertsonian chromosomes and the nuclear architecture of mouse meiotic prophase spermatocytes. Biol Res 47(1):1CrossRefGoogle Scholar
  5. Bohn M, Diesinger P, Kaufmann R, Weiland Y, Müller P, Gunkel M, Von Ketteler A, Lemmer P, Hausmann M, Heermann DW et al (2010) Localization microscopy reveals expression-dependent parameters of chromatin nanostructure. Biophys J 99(5):1358–1367CrossRefPubMedPubMedCentralGoogle Scholar
  6. Buard J, Barthès P, Grey C, de Massy B (2009) Distinct histone modifications define initiation and repair of meiotic recombination in the mouse. EMBO J 28(17):2616–2624CrossRefPubMedPubMedCentralGoogle Scholar
  7. Callan HG (2012) Lampbrush chromosomes, vol 36. Springer Science & Business Media, New YorkGoogle Scholar
  8. Clément Y (2012) The evolution of base composition in mammalian genomes. PhD thesis, Freie Universität BerlinGoogle Scholar
  9. Gall JG (2012) Are lampbrush chromosomes unique to meiotic cells? Chromosom Res 20(8):905–909CrossRefGoogle Scholar
  10. Gall JG, Pardue ML (1969) Formation and detection of rna-dna hybrid molecules in cytological preparations. Proc Natl Acad Sci 63(2):378–383CrossRefPubMedPubMedCentralGoogle Scholar
  11. Gustafsson MGL, Shao L, Carlton PM, Rachel Wang CJ, Golubovskaya IN, Zacheus Cande W, Agard DA, Sedat JW (2008) Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys J 94(12):4957–4970CrossRefPubMedPubMedCentralGoogle Scholar
  12. Heng HH, Chamberlain JW, Shi X-M, Spyropoulos B, Tsui L-C, Moens PB (1996) Regulation of meiotic chromatin loop size by chromosomal position. Proc Natl Acad Sci 93(7):2795–2800CrossRefPubMedPubMedCentralGoogle Scholar
  13. Hernández-Hernández A, Ortiz R, Ubaldo E, Echeverría Martínez OM, Vázquez-Nin GH, Recillas-Targa F (2010) Synaptonemal complex stability depends on repressive histone marks of the lateral element-associated repeat sequences. Chromosoma 119(1):41–58CrossRefPubMedGoogle Scholar
  14. Hernández-Hernández A, Vázquez-Nin GH, Hernádez RO (2012) INTECH Open Access Publisher, Epigenetics of the Synaptonemal ComplexGoogle Scholar
  15. Kaufmann R, Piontek J, Grüll F, Kirchgessner M, Rossa J, Wolburg H, Blasig IE, Cremer C (2012) Visualization and quantitative analysis of reconstituted tight junctions using localization microscopy. PloS One 7(2):e31128CrossRefPubMedPubMedCentralGoogle Scholar
  16. Lichten M (2001) Meiotic recombination: breaking the genome to save it. Curr Biol 11(7):R253–R256CrossRefPubMedGoogle Scholar
  17. Lippincott-Schwartz J, Patterson GH (2009) Photoactivatable fluorescent proteins for diffraction-limited and super-resolution imaging. Trends in Cell Biol 19(11):555–565CrossRefGoogle Scholar
  18. Liu N, Fromm M, Avramova Z (2014) H3k27me3 and h3k4me3 chromatin environment at super-induced dehydration stress memory genes of arabidopsis thaliana. Mol Plant 7(3):502–513CrossRefPubMedGoogle Scholar
  19. Mihola O, Trachtulec Z, Vlcek C, Schimenti JC, Forejt J (2009) A mouse speciation gene encodes a meiotic histone h3 methyltransferase. Science 323(5912):373–375CrossRefPubMedGoogle Scholar
  20. Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim T-K, Koche RP et al (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448(7153):553–560CrossRefPubMedPubMedCentralGoogle Scholar
  21. Montrose J, Moses MJ, Russel LB, Cacheiro NL (1977) Mouse chromosome translocations: visualization and analysis by electron microscopy of the synaptonemal complex. Science 196(4292):892–894CrossRefGoogle Scholar
  22. Pauler FM, Sloane MA, Huang R, Regha K, Koerner MV, Tamir I, Sommer A, Aszodi A, Jenuwein T, Barlow DP (2009) H3k27me3 forms blocs over silent genes and intergenic regions and specifies a histone banding pattern on a mouse autosomal chromosome. Genome Res 19(2):221–233CrossRefPubMedPubMedCentralGoogle Scholar
  23. Petronczki M, Siomos MF, Nasmyth K (2003) Un menage a quatre: the molecular biology of chromosome segregation in meiosis. Cell 112(4):423–440CrossRefPubMedGoogle Scholar
  24. Prakash K (2012) A binary combinatorial histone code. Master thesis, Aalto UniversityGoogle Scholar
  25. Prakash K, Fournier D, Redl S, Best G, Borsos M, Tiwari VK, Tachibana-Konwalski K, Ketting RF, Parekh SH, Cremer C et al (2015) Superresolution imaging reveals structurally distinct periodic patterns of chromatin along pachytene chromosomes. Proc Natl Acad Sci 112(47):14635–14640CrossRefPubMedPubMedCentralGoogle Scholar
  26. Pratto F, Brick K, Khil P, Smagulova F, Petukhova GV, Daniel Camerini-Otero R (2014) Recombination initiation maps of individual human genomes. Science 346(6211):1256442CrossRefPubMedGoogle Scholar
  27. Rattner JB, Goldsmith M, Hamkalo BA (1980) Chromatin organization during meiotic prophase ofbombyx mori. Chromosoma 79(2):215–224CrossRefPubMedGoogle Scholar
  28. Sato A, Isaac B, Phillips CM, Rillo R, Carlton PM, Wynne DJ, Kasad RA, Dernburg AF (2009) Cytoskeletal forces span the nuclear envelope to coordinate meiotic chromosome pairing and synapsis. Cell 139(5):907–919CrossRefPubMedPubMedCentralGoogle Scholar
  29. Schücker K, Holm T, Franke C, Sauer M, Benavente R (2015) Elucidation of synaptonemal complex organization by super-resolution imaging with isotropic resolution. Proc Natl Acad Sci 112(7):2029–2033CrossRefPubMedPubMedCentralGoogle Scholar
  30. Sommermeyer V, Béneut C, Chaplais E, Serrentino ME, Borde V (2013) Spp1, a member of the set1 complex, promotes meiotic dsb formation in promoters by tethering histone h3k4 methylation sites to chromosome axes. Mol Cell 49(1):43–54CrossRefPubMedGoogle Scholar
  31. Sue Hammoud S, Low DHP, Yi C, Carrell DT, Guccione E, Cairns BR (2014) Chromatin and transcription transitions of mammalian adult germline stem cells and spermatogenesis. Cell Stem Cell 15(2):239–253CrossRefGoogle Scholar
  32. Syrjänen JL, Pellegrini L, Davies OR (2014) A molecular model for the role of sycp3 in meiotic chromosome organisation. Elife 3:e02963CrossRefPubMedCentralGoogle Scholar
  33. Szczurek AT, Prakash K, Lee H-K, Żurek-Biesiada DJ, Best G, Hagmann M, Dobrucki JW, Cremer C, Birk U (2014) Single molecule localization microscopy of the distribution of chromatin using hoechst and dapi fluorescent probes. Nucleus 5(4):331–340CrossRefPubMedPubMedCentralGoogle Scholar
  34. Wang Z, Zang C, Rosenfeld JA, Schones DE, Barski A, Cuddapah S, Cui K, Roh TY, Peng W, Zhang MQ et al (2008) Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet 40(7):897–903CrossRefPubMedPubMedCentralGoogle Scholar
  35. Wu C-Y, Tsai Y-P, Wu M-Z, Teng S-C, Wu K-J (2012) Epigenetic reprogramming and post-transcriptional regulation during the epithelial-mesenchymal transition. Trends Genet 28(9):454–463CrossRefPubMedGoogle Scholar
  36. Żurek-Biesiada D, Szczurek AT, Prakash K, Mohana GK, Lee H-K, Roignant J-Y, Birk U, Dobrucki JW, Cremer C (2015) Localization microscopy of dna in situ using vybrant dyecycle violet fluorescent probe: a new approach to study nuclear nanostructure at single molecule resolution. Exp Cell ResGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Heidelberg UniversityHeidelbergGermany
  2. 2.Institute of Molecular Biology (IMB)MainzGermany

Personalised recommendations