Structure, Function and Dynamics of Chromatin

  • Kirti PrakashEmail author
Part of the Springer Theses book series (Springer Theses)


Chromatin is a DNA-protein polymer, which consists of DNA, structural proteins, non-structural proteins and RNA. During interphase, chromatin encodes the information necessary to maintain the primary functions of the cells. At the same time, the cell holds in a relatively small volume (roughly 4000 \(\upmu \mathrm{m}^3\) of diameter for the nucleus) the entire genome, which is billions of base pairs long and roughly 3 m in length when completely unfolded. Moreover, information needs to be retrieved from this highly condensed structure when a gene needs to be expressed at a fast pace.


Histone Modification Chromatin Organisation Chromatin Domain Chromosome Territory Chromatin Fibre 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129(4):823–837CrossRefPubMedGoogle Scholar
  2. Bassett A, Cooper S, Wu C, Travers A (2009) The folding and unfolding of eukaryotic chromatin. Current Opinion Genet Dev 19(2):159–165Google Scholar
  3. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645Google Scholar
  4. Boettiger AN, Bintu B, Moffitt JR, Wang S, Beliveau BJ, Fudenberg G, Imakaev M, Mirny LA, Wu C-t, Zhuang X (2016) Super-resolution imaging reveals distinct chromatin folding for different epigenetic states. Nature 529(7586):418–422Google Scholar
  5. Boulos RE, Drillon G, Argoul F, Arneodo A, Audit B (2015) Structural organization of human replication timing domains. FEBS Lett 589(20PartA):2944–2957Google Scholar
  6. Branco MR, Pombo A (2007) Chromosome organization: new facts, new models. Trends Cell Biol 17(3):127–134Google Scholar
  7. Busch H (1974) The cell nucleus. Academic Press, New YorkGoogle Scholar
  8. Cook PR (2010) A model for all genomes: the role of transcription factories. J Mol Biol 395(1):1–10Google Scholar
  9. Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2(4):292–301Google Scholar
  10. Cremer T, Cremer C, Schneider T, Baumann H, Hens L, Kirsch-Volders M (1982b) Analysis of chromosome positions in the interphase nucleus of chinese hamster cells by laser-UV-microirradiation experiments. Hum Genet 62(3):201–209Google Scholar
  11. Cremer T, Cremer M, Dietzel S, Müller S, Solovei I, Fakan S (2006) Chromosome territories-a functional nuclear landscape. Current Opinion Cell Biol 18(3):307–316Google Scholar
  12. Cremer T, Cremer M, Hübner B, Strickfaden H, Smeets D, Popken J, Sterr M, Markaki Y, Rippe K, Cremer C (2015) The 4D nucleome: evidence for a dynamic nuclear landscape based on co-aligned active and inactive nuclear compartments. FEBS LettGoogle Scholar
  13. Davies HG (1968) Electron-microscope observations on the organization of hetero-chromatin in certain cells. J Cell Sci 3(1):129–150PubMedGoogle Scholar
  14. Davies HG, Small JV (1968) Structural units in chromatin and their orientation on membranes. Nature 217:1122–1125CrossRefPubMedGoogle Scholar
  15. Dehghani H, Dellaire G, Bazett-Jones DP (2005) Organization of chromatin in the interphase mammalian cell. Micron 36(2):95–108Google Scholar
  16. Dietzel S, Zolghadr K, Hepperger C, Belmont AS (2004) Differential large-scale chromatin compaction and intranuclear positioning of transcribed versus non-transcribed transgene arrays containing \(\beta \)-globin regulatory sequences. J Cell Sci 117(19):4603–4614Google Scholar
  17. Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485(7398):376–380Google Scholar
  18. Doyle B, Fudenberg G, Imakaev M, Mirny LA (2014) Chromatin loops as allosteric modulators of enhancer-promoter interactions. PLoS Comput Biol 10(10):e1003867Google Scholar
  19. Dubochet J, Adrian M, Schultz P, Oudet P (1986) Cryo-electron microscopy of vitrified SV40 minichromosomes: the liquid drop model. EMBO J 5(3):519PubMedPubMedCentralGoogle Scholar
  20. Everid AC, Small JV, Davies HG (1970) Electron-microscope observations on the structure of condensed chromatin: evidence for orderly arrays of unit threads on the surface of chicken erythrocyte nuclei. J Cell Sci 7(1):35–48PubMedGoogle Scholar
  21. Filion GJ, van Bemmel JG, Ulrich B, Wendy T, Jop K, Ward LD, Wim B, de Castro IJ, Kerkhoven RM, Bussemaker HJ et al (2010) Systematic protein location mapping reveals five principal chromatin types in drosophila cells. Cell 143(2):212–224Google Scholar
  22. Finch JT, Klug A (1976) Solenoidal model for superstructure in chromatin. Proc Natl Acad Sci 73(6):1897–1901CrossRefPubMedPubMedCentralGoogle Scholar
  23. Frenster JH, Allfrey VG, Mirsky AE (1963) Repressed and active chromatin isolated from interphase lymphocytes. Proc Natl Acad Sci 50(6):1026–1032Google Scholar
  24. Fussner E, Ching RW, Bazett-Jones DP (2011) Living without 30 nm chromatin fibers. Trends Biochem Sci 36(1):1–6Google Scholar
  25. Gall J (1963) Chromosome fibers from an interphase nucleus. Science 139(3550):120–121Google Scholar
  26. Gall JG, Pardue ML (1969) Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proc Natl Acad Sci 63(2):378–383Google Scholar
  27. Haggis GH (1992) Sample preparation for electron microscopy of internal cell structure. Microsc Res Tech 22(2):151–159Google Scholar
  28. Haggis GH, Pawley JB (1988) Freeze-fracture of 3T3 cells for high-resolution scanning electron microscopy. J Microsc 150(3):211–218CrossRefPubMedGoogle Scholar
  29. Hargreaves DC, Crabtree GR (2011) ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res 21(3):396–420Google Scholar
  30. Harmon B, Sedat J (2005) Cell-by-cell dissection of gene expression and chromosomal interactions reveals consequences of nuclear reorganization. PLoS Biol 3(3):e67Google Scholar
  31. Hay ED, Revel JP (1963) The fine structure of the DNP component of the nucleus: An electron microscopic study utilizing autoradiography to localize DNA synthesis. J Cell Biol 16(1):29–51Google Scholar
  32. Hoshi O, Ushiki T (2001) Three-dimensional structure of G-banded human metaphase chromosomes observed by atomic force microscopy. Arch Histol Cytol 64(5):475–482Google Scholar
  33. Ibn-Salem J, Köhler S, Love MI, Chung H-R, Huang N, Hurles ME, Haendel M, Washington NL, Smedley D, Mungall CJ, et al (2014) Deletions of chromosomal regulatory boundaries are associated with congenital. Genome Biol 15(9):423Google Scholar
  34. Iborra FJ, Pombo A, Jackson DA, Cook PR (1996) Active RNA polymerases are localized within discrete transcription factories in human nuclei. J Cell Sci 109(6):1427–1436Google Scholar
  35. Johnson AB, Barton MC (2007) Hypoxia-induced and stress-specific changes in chromatin structure and function. Mutation Res/Fundam Mol Mech Mutagen 618(1):149–162Google Scholar
  36. Karmodiya K, Krebs AR, Oulad-Abdelghani M, Kimura H, Tora L (2012) H3K9 and H3K14 acetylation co-occur at many gene regulatory elements, while H3K14AC marks a subset of inactive inducible promoters in mouse embryonic stem cells. BMC genomics 13(1):424Google Scholar
  37. Kirmes I, Szczurek A, Prakash K, Charapitsa I, Heiser C, Musheev M, Schock F, Fornalczyk K, Ma D, Birk U et al (2015) A transient ischemic environment induces reversible compaction of chromatin. Genome Biol 16(1):1–19Google Scholar
  38. Kornberg RD (1974) Chromatin structure: a repeating unit of histones and DNA. Science 184(4139):868–871Google Scholar
  39. Kornberg RD, Lorch Y (1999) Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98(3):285–294Google Scholar
  40. Kossel A (1884) Ueber einen peptonartigen bestandtheil des zellkerns. Zeitschrift für physiologische Chemie 8(6):511–515Google Scholar
  41. Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 å resolution. Nature 389(6648):251–260Google Scholar
  42. Luzzati V, Nicolaieff A (1963) The structure of nucleohistones and nucleoprotamines. J Mol Biol 7(2):142–163Google Scholar
  43. Maeshima K, Imai R, Tamura S, Nozaki T (2014) Chromatin as dynamic 10-nm fibers. Chromosoma 123(3):225–237Google Scholar
  44. Markaki Y, Gunkel M, Schermelleh L, Beichmanis S, Neumann J, Heidemann M, Leonhardt H, Eick D, Cremer C, Cremer T (2010) Functional nuclear organization of transcription and DNA replication a topographical marriage between chromatin domains and the interchromatin compartment. Cold Spring Harbor Symp Quant Biol 75:475–492; Cold Spring Harbor Laboratory Press (2010)Google Scholar
  45. Mayer R, Brero A, Von Hase J, Schroeder T, Cremer T, Dietzel S (2005) Common themes and cell type specific variations of higher order chromatin arrangements in the mouse. BMC Cell Biol 6(1):44Google Scholar
  46. Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim T-K, Koche RP et al (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448(7153):553–560Google Scholar
  47. Mirsky AE, Ris H (1951) The desoxyribonucleic acid content of animal cells and its evolutionary significance. J General Physiol 34(4):451Google Scholar
  48. Mora-Bermúdez F, Ellenberg J (2007) Measuring structural dynamics of chromosomes in living cells by fluorescence microscopy. Methods 41(2):158–167Google Scholar
  49. Olins AL, Olins DE (1974) Spheroid chromatin units (\(\nu \) bodies). Science 183(4122):330–332Google Scholar
  50. Olins DE, Olins AL (2003) Chromatin history: our view from the bridge. Nat Rev Mol Cell Biol 4(10):809–814Google Scholar
  51. Ostashevsky J (1998) A polymer model for the structural organization of chromatin loops and minibands in interphase chromosomes. Mol Biol Cell 9(11):3031–3040Google Scholar
  52. Oudet P, Gross-Bellard M, Chambon P (1975) Electron microscopic and biochemical evidence that chromatin structure is a repeating unit. Cell 4(4):281–300CrossRefPubMedGoogle Scholar
  53. Pope BD, Ryba T, Dileep V, Yue F, Wu W, Denas O, Vera DL, Wang Y, Scott Hansen R, Canfield TK et al (2014) Topologically associating domains are stable units of replication-timing regulation. Nature 515(7527):402–405Google Scholar
  54. Popken J, Graf A, Krebs S, Blum H, Schmid VJ, Strauss A, Guengoer T, Zakhartchenko V, Wolf E, Cremer T (2015) Remodeling of the nuclear envelope and lamina during bovine preimplantation development and its functional implications. PLoS OneGoogle Scholar
  55. Prakash K, Fournier D, Redl S, Best G, Borsos M, Tiwari VK, Tachibana-Konwalski K, Ketting RF, Parekh SH, Cremer C et al (2015) Superresolution imaging reveals structurally distinct periodic patterns of chromatin along pachytene chromosomes. Proc Natl Acad Sci 112(47):14635–14640Google Scholar
  56. Puvion E, Puvion-Dutilleul F (1996) Ultrastructure of the nucleus in relation to transcription and splicing: roles of perichromatin fibrils and interchromatin granules. Exp Cell Res 229(2):217–225Google Scholar
  57. Rao SSP, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, Sanborn AL, Ido M, Omer AD, Lander ES et al (2014) A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159(7):1665–1680Google Scholar
  58. Richmond TJ, Finch JT, Rushton B, Rhodes D, Klug A (1983) Structure of the nucleosome core particle at 7 a resolution. Nature 311(5986):532–537CrossRefGoogle Scholar
  59. Sexton T, Umlauf D, Kurukuti S, Fraser P (2007) The role of transcription factories in large-scale structure and dynamics of interphase chromatin. Semin Cell Dev Biol 18:691–697 (Elsevier)Google Scholar
  60. Smeets D, Markaki Y, Schmid VJ, Kraus F, Tattermusch A, Cerase A, Sterr M, Fiedler S, Demmerle J, Popken J et al (2014) Three-dimensional super-resolution microscopy of the inactive X chromosome territory reveals a collapse of its active nuclear compartment harboring distinct Xist RNA foci. Epigenetics Chromatin 7:8Google Scholar
  61. Stack SM, Brown DB, WC Dewey (1977) Visualization of interphase chromosomes. J Cell Sci 26(1):281–299Google Scholar
  62. Sutherland H, Bickmore WA (2009) Transcription factories: gene expression in unions? Nat Rev Genet 10(7):457–466Google Scholar
  63. Thoma F, Koller Th, Klug A (1979) Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin. J Cell Biol 83(2):403–427Google Scholar
  64. Ushiki T, Hoshi O (2008) Atomic force microscopy for imaging human metaphase chromosomes. Chromosom Res 16(3):383–396Google Scholar
  65. Wang Z, Zang C, Rosenfeld JA, Schones DE, Barski A, Cuddapah S, Cui K, Roh TY, Peng W, Zhang MQ et al (2008) Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet 40(7):897–903CrossRefPubMedPubMedCentralGoogle Scholar
  66. Woodcock CL, Frado L-LY, Rattner JB (1984) The higher-order structure of chromatin: evidence for a helical ribbon arrangement. J Cell Biol 99(1):42–52Google Scholar
  67. Zessin PJM, Finan K, Heilemann M (2012) Superresolution fluorescence imaging of chromosomal DNA. J Struct Biol 177(2):344–348Google Scholar
  68. Zirbel RM, Mathieu UR, Kurz A, Cremer T, Lichter P (1993) Evidence for a nuclear compartment of transcription and splicing located at chromosome domain boundaries. Chromosom Res 1(2):93–106Google Scholar
  69. Zorn C, Cremer T, Cremer C, Zimmer J (1976) Laser UV microirradiation of interphase nuclei and post-treatment with caffeine. Hum Genet 35(1):83–89Google Scholar
  70. Zorn C, Cremer C, Cremer T, Zimmer J (1979) Unscheduled DNA synthesis after partial UV irradiation of the cell nucleus: distribution in interphase and metaphase. Exp Cell Res 124(1):111–119Google Scholar
  71. Żurek-Biesiada D, Szczurek AT, Prakash K, Mohana GK, Lee H-K, Roignant J-Y, Birk U, Dobrucki JW, Cremer C (2015) Localization microscopy of DNA in situ using vybrant dyecycle violet fluorescent probe: a new approach to study nuclear nanostructure at single molecule resolution. Exp Cell ResGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Heidelberg UniversityHeidelbergGermany
  2. 2.Institute of Molecular Biology (IMB)MainzGermany

Personalised recommendations