Investigating Chromatin Organisation Using Single Molecule Localisation Microscopy

  • Kirti PrakashEmail author
Part of the Springer Theses book series (Springer Theses)


In this chapter, I discuss the technical details of single molecule localisation microscopy (SMLM) to investigate spatial and temporal organisation of DNA. The DNA is hierarchically folded at multiple levels to become more compacted and functionally organise itself inside of the nucleus. This spatial arrangement in turn affects the functionality of DNA.


Point Spread Function Localisation Accuracy Labelling Density Drift Correction Localisation Precision 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abbe E (1873) Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrmehmung. Archiv für Mikroskopische Anatomie 9:413–420. doi: 10.1007/BF02956173 CrossRefGoogle Scholar
  2. Albiez H, Cremer M, Tiberi C, Vecchio L, Schermelleh L, Dittrich S, Küpper K, Joffe B, Thormeyer T, von Hase J et al (2006) Chromatin domains and the interchromatin compartment form structurally defined and functionally interacting nuclear networks. Chromosom Res 14(7):707–733CrossRefGoogle Scholar
  3. Anton T, Bultmann S, Leonhardt H, Markaki Y (2014) Visualization of specific dna sequences in living mouse embryonic stem cells with a programmable fluorescent crispr/cas system. Nucleus 5(2):163–172CrossRefPubMedPubMedCentralGoogle Scholar
  4. Baddeley D, Cannell MB, Soeller C (2010) Visualization of localization microscopy data. Microsc Microanal 16(01):64–72CrossRefPubMedGoogle Scholar
  5. Baskin JM, Prescher JA, Laughlin ST, Agard NJ, Chang PV, Miller IA, Lo A, Codelli JA, Bertozzi CR (2007) Copper-free click chemistry for dynamic in vivo imaging. Proc Natl Acad Sci 104(43):16793–16797CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bates M, Jones SA, Zhuang X (2013) Stochastic optical reconstruction microscopy (storm): a method for superresolution fluorescence imaging. Cold Spring Harbor Protoc 2013(6):pdb–top075143Google Scholar
  7. Bernas T, Zarebski M, Cook RR, Dobrucki JW (2004) Minimizing photobleaching during confocal microscopy of fluorescent probes bound to chromatin: role of anoxia and photon flux. J Microsc 215(3):281–296CrossRefPubMedGoogle Scholar
  8. Best G, Prakash K, Hagmann M, Cremer C, Birk U (2014) Identify and localise: algorithms for single molecule localisation microscopy. In: Hozák P (ed) 18th international microscopy congress, number ISBN 978-80-260-6720-7Google Scholar
  9. Betzig E (1995) Proposed method for molecular optical imaging. Opt Lett 20(3):237–239CrossRefPubMedGoogle Scholar
  10. Betzig E, Patterson GH, Sougrat R, Wolf Lindwasser O, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645CrossRefPubMedGoogle Scholar
  11. Biancardi A, Biver T, Secco F, Mennucci B (2013) An investigation of the photophysical properties of minor groove bound and intercalated dapi through quantum-mechanical and spectroscopic tools. Phys Chem Chem Phys 15(13):4596–4603CrossRefPubMedGoogle Scholar
  12. Biteen JS, Thompson MA, Tselentis NK, Bowman GR, Shapiro L, Moerner WE (2008) Super-resolution imaging in live caulobacter crescentus cells using photoswitchable eyfp. Nature Methods 5(11):947–949CrossRefPubMedPubMedCentralGoogle Scholar
  13. Boettiger AN, Bintu B, Moffitt JR, Wang S, Beliveau BJ, Fudenberg G, Imakaev M, Mirny LA, Wu C-T, Zhuang X (2016) Super-resolution imaging reveals distinct chromatin folding for different epigenetic states. Nature 529(7586):418–422CrossRefPubMedPubMedCentralGoogle Scholar
  14. Bohn M, Diesinger P, Kaufmann R, Weiland Y, Müller P, Gunkel M, Von Ketteler A, Lemmer P, Hausmann M, Heermann DW et al (2010) Localization microscopy reveals expression-dependent parameters of chromatin nanostructure. Biophys J 99(5):1358–1367CrossRefPubMedPubMedCentralGoogle Scholar
  15. Brooks Shera E, Seitzinger NK, Davis LM, Keller RA, Soper SA (1990) Detection of single fluorescent molecules. Chem Phys Lett 174(6):553–557CrossRefGoogle Scholar
  16. Burnette DT, Sengupta P, Dai Y, Lippincott-Schwartz J, Kachar B (2011) Bleaching/blinking assisted localization microscopy for superresolution imaging using standard fluorescent molecules. Proc Natl Acad Sci 108(52):21081–21086CrossRefPubMedPubMedCentralGoogle Scholar
  17. Burns DH, Callis JB, Christian GD, Davidson ER (1985) Strategies for attaining superresolution using spectroscopic data as constraints. Appl Opt 24(2):154–161CrossRefPubMedGoogle Scholar
  18. Chandra T, Kirschner K, Thuret J-Y, Pope BD, Ryba T, Newman S, Ahmed K, Samarajiwa SA, Salama R, Carroll T et al (2012) Independence of repressive histone marks and chromatin compaction during senescent heterochromatic layer formation. Mol cell 47(2):203–214CrossRefPubMedPubMedCentralGoogle Scholar
  19. Chen B, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W, Li G-W, Park J, Blackburn EH, Weissman JS, Qi LS et al (2013) Dynamic imaging of genomic loci in living human cells by an optimized crispr/cas system. Cell 155(7):1479–1491CrossRefPubMedPubMedCentralGoogle Scholar
  20. Chenouard N, Smal I, De Chaumont F, Maška M, Sbalzarini IF, Gong Y, Cardinale J, Carthel C, Coraluppi S, Winter M et al (2014) Objective comparison of particle tracking methods. Nature Methods 11(3):281CrossRefPubMedPubMedCentralGoogle Scholar
  21. Cosa G, Focsaneanu KS, McLean JRN, McNamee JP, Scaiano JC (2001) Photophysical properties of fluorescent dna-dyes bound to single-and double-stranded dna in aqueous buffered solution. Photochem Photobiol 73(6):585–599CrossRefPubMedGoogle Scholar
  22. Cremer C, Cremer T (1978) Considerations on a laser-scanning-microscope with high resolution and depth of field. Microsc Acta 81:31–44PubMedGoogle Scholar
  23. Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nature Rev Genet 2(4):292–301CrossRefPubMedGoogle Scholar
  24. Cremer T, Küpper K, Dietzel S, Fakan S (2004) Higher order chromatin architecture in the cell nucleus: on the way from structure to function. Biol Cell 96(8):555–567CrossRefPubMedGoogle Scholar
  25. Cremer T, Cremer M, Hübner B, Strickfaden H, Smeets D, Popken J, Sterr M, Markaki Y, Rippe K, Cremer C (2015) The 4d nucleome: Evidence for a dynamic nuclear landscape based on co-aligned active and inactive nuclear compartments. FEBS Lett 589:2931–2943CrossRefPubMedGoogle Scholar
  26. Diana C, Carvalho PC (2010) Supramolecular biomimetic binding of the DNA-dye Hoechst 33258 by a synthetic macrocycle. Ph.D. thesisGoogle Scholar
  27. Dickson RM, Cubitt AB, Tsien RY, Moerner WE (1997) On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature 388(6640):355–358CrossRefPubMedGoogle Scholar
  28. Doudna JA, Charpentier E (2014) The new frontier of genome engineering with crispr-cas9. Science 346(6213):1258096CrossRefPubMedGoogle Scholar
  29. Egner A, Geisler C, Von Middendorff C, Bock H, Wenzel D, Medda R, Andresen M, Stiel AC, Jakobs S, Eggeling C et al (2007) Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters. Biophys J 93(9):3285–3290CrossRefPubMedPubMedCentralGoogle Scholar
  30. Fölling J, Bossi M, Bock H, Medda R, Wurm CA, Hein B, Jakobs S, Eggeling C, Hell SW (2008) Fluorescence nanoscopy by ground-state depletion and single-molecule return. Nature Methods 5(11):943–945CrossRefPubMedGoogle Scholar
  31. Früh SM, Schoen I, Ries J, Vogel V (2015) Molecular architecture of native fibronectin fibrils. Nature Commun 6:7275CrossRefGoogle Scholar
  32. Grammel M, Hang HC (2013) Chemical reporters for biological discovery. Nature Chem Biol 9(8):475–484CrossRefGoogle Scholar
  33. Gustafsson MGL (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 198(2):82–87CrossRefPubMedGoogle Scholar
  34. Hagmann M, Prakash K, Best G, Kaufmann R, Birk U, Cremer C (2014) Drift correction strategies for single molecule localisation microscopy. In: Hozák P (ed) 18th international microscopy congress, number ISBN 978-80-260-6720-7Google Scholar
  35. Hagmann M, Prakash K, Cremer C (2016) Visualisation enhancement for single molecule reconstructions using wigner–seitz cells (in preparation)Google Scholar
  36. Heilemann M, Van De Linde S, Schüttpelz M, Kasper R, Seefeldt B, Mukherjee A, Tinnefeld P, Sauer M (2008) Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Edition 47(33):6172–6176CrossRefGoogle Scholar
  37. Heintzmann R, Cremer C (1999) Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating. In: BiOS Europe’98. International Society for Optics and Photonics, pp 185–196Google Scholar
  38. Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19(11):780–782CrossRefPubMedGoogle Scholar
  39. Hess ST, Girirajan TPK, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91(11):4258CrossRefPubMedPubMedCentralGoogle Scholar
  40. Hirschfeld T (1976) Optical microscopic observation of single small molecules. Appl Opt 15(12):2965–2966CrossRefPubMedGoogle Scholar
  41. Hsu PD, Lander ES, Zhang F (2014) Development and applications of crispr-cas9 for genome engineering. Cell 157(6):1262–1278CrossRefPubMedPubMedCentralGoogle Scholar
  42. Hussels M, Brecht M (2011) Effect of glycerol and pva on the conformation of photosystem i. Biochemistry 50(18):3628–3637CrossRefPubMedGoogle Scholar
  43. Jianzhuang L, Wenqing L, Yupeng T (1991) Automatic thresholding of gray-level pictures using two-dimension otsu method. In: 1991 international conference on circuits and systems, 1991. Conference proceedings, China, pp 325–327. IEEEGoogle Scholar
  44. Kaufmann R, Piontek J, Grüll F, Kirchgessner M, Rossa J, Wolburg H, Blasig IE, Cremer C (2012) Visualization and quantitative analysis of reconstituted tight junctions using localization microscopy. PloS One 7(2):e31128CrossRefPubMedPubMedCentralGoogle Scholar
  45. Klein T, Löschberger A, Proppert S, Wolter S, van de Linde S, Sauer M (2011) Live-cell dstorm with snap-tag fusion proteins. Nature Methods 8(1):7–9CrossRefPubMedGoogle Scholar
  46. Lemmer P, Gunkel M, Baddeley D, Kaufmann R, Urich A, Weiland Y, Reymann J, Müller P, Hausmann M, Cremer C (2008) Spdm: light microscopy with single-molecule resolution at the nanoscale. Appl Phys B 93(1):1–12CrossRefGoogle Scholar
  47. Lemmer P, Gunkel M, Weiland Y, Müller P, Baddeley D, Rainer Kaufmann A, Urich HE, Amberger R, Hausmann M et al (2009) Using conventional fluorescent markers for far-field fluorescence localization nanoscopy allows resolution in the 10-nm range. J Microsc 235(2):163–171CrossRefPubMedGoogle Scholar
  48. Lidke K, Rieger B, Jovin T, Heintzmann R (2005) Superresolution by localization of quantum dots using blinking statistics. Opt Express 13(18):7052–7062CrossRefPubMedGoogle Scholar
  49. Manley S, Gillette JM, Patterson GH, Shroff H, Hess HF, Betzig E, Lippincott-Schwartz J (2008) High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nature Methods 5(2):155–157CrossRefPubMedGoogle Scholar
  50. Miyanari Y, Ziegler-Birling C, Torres-Padilla M-E (2013) Live visualization of chromatin dynamics with fluorescent tales. Nature Struct Mol Biol 20(11):1321–1324CrossRefGoogle Scholar
  51. Moerner WE, Kador L (1989) Optical detection and spectroscopy of single molecules in a solid. Phys Rev Lett 62(21):2535CrossRefPubMedGoogle Scholar
  52. Müller P, Schmitt E, Jacob A, Hoheisel J, Kaufmann R, Cremer C, Hausmann M (2010) Combo-fish enables high precision localization microscopy as a prerequisite for nanostructure analysis of genome loci. Int J Mol Sci 11(10):4094–4105CrossRefPubMedPubMedCentralGoogle Scholar
  53. Neice A (2010) Chapter 3 - methods and limitations of subwavelength imaging. In: Hawkes PW (ed) Advances in imaging and electron physics, vol 163. Elsevier, pp 117–140. doi: 10.1016/S1076-5670(10)63003-0
  54. Nieuwenhuizen RPJ, Lidke KA, Bates M, Puig DL, Grünwald D, Stallinga S, Rieger B (2013) Measuring image resolution in optical nanoscopy. Nature Methods 10(6):557–562CrossRefPubMedPubMedCentralGoogle Scholar
  55. Piterburg M, Panet H, Weiss A (2012) Photoconversion of dapi following uv or violet excitation can cause dapi to fluoresce with blue or cyan excitation. J Microsc 246(1):89–95CrossRefPubMedGoogle Scholar
  56. Prakash K, Fournier D, Redl S, Best G, Borsos M, Tiwari VK, Tachibana-Konwalski K, Ketting RF, Parekh SH, Cremer C et al (2015) Superresolution imaging reveals structurally distinct periodic patterns of chromatin along pachytene chromosomes. Proc Natl Acad Sci 112(47):14635–14640CrossRefPubMedPubMedCentralGoogle Scholar
  57. Rao SSP, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, Sanborn AL, Machol I, Omer AD, Lander ES et al (2014) A 3d map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159(7):1665–1680CrossRefPubMedGoogle Scholar
  58. Rayleigh L (1896) Xv. on the theory of optical images, with special reference to the microscope. Lond Edinb Dublin Philos Mag J Sci 42(255):167–195Google Scholar
  59. Rust MJ, Bates M, Zhuang X (2006) Stochastic optical reconstruction microscopy (storm) provides sub-diffraction-limit image resolution. Nature Methods 3(10):793CrossRefPubMedPubMedCentralGoogle Scholar
  60. Ricci MA, Manzo C, García-Parajo MF, Lakadamyali M, Cosma MP (2015) Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo. Cell 160(6):1145–1158CrossRefPubMedGoogle Scholar
  61. Schoen I, Ries J, Klotzsch E, Ewers H, Vogel V (2011) Binding-activated localization microscopy of dna structures. Nano Lett 11(9):4008–4011CrossRefPubMedGoogle Scholar
  62. Sengupta P, van Engelenburg SB, Lippincott-Schwartz J (2014) Superresolution imaging of biological systems using photoactivated localization microscopy. Chem Rev 114(6):3189–3202CrossRefPubMedPubMedCentralGoogle Scholar
  63. Sheppard CJR, Wilson T (1981) Effects of high angles of convergence on v (z) in the scanning acoustic microscope. Appl Phys Lett 38(11):858–859CrossRefGoogle Scholar
  64. Shroff H, Galbraith CG, Galbraith JA, Betzig E (2008) Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nature Methods 5(5):417–423CrossRefPubMedPubMedCentralGoogle Scholar
  65. Small AR, Parthasarathy R (2014) Superresolution localization methods. Ann Rev Phys Chem 65:107–125CrossRefGoogle Scholar
  66. Small A, Stahlheber S (2014) Fluorophore localization algorithms for super-resolution microscopy. Nature Methods 11(3):267–279CrossRefPubMedGoogle Scholar
  67. Sunney Xie X, Dunn RC et al (1994) Probing single molecule dynamics. Science 265:361CrossRefGoogle Scholar
  68. Szczurek AT, Prakash K, Lee H-K, Żurek-Biesiada DJ, Best G, Hagmann M, Dobrucki JW, Cremer C, Birk U (2014) Single molecule localization microscopy of the distribution of chromatin using hoechst and dapi fluorescent probes. Nucleus 5(4):331–340CrossRefPubMedPubMedCentralGoogle Scholar
  69. Thanisch K, Schneider K, Morbitzer R, Solovei I, Lahaye T, Bultmann S, Leonhardt H (2013) Targeting and tracing of specific dna sequences with dtales in living cells. Nucleic Acids Res, gkt1348Google Scholar
  70. Thompson RE, Larson DR, Webb WW (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82(5):2775–2783CrossRefPubMedPubMedCentralGoogle Scholar
  71. Uno SN, Kamiya M, Yoshihara T, Sugawara K, Okabe K, Tarhan MC, Fujita H, Funatsu T, Okada Y, Tobita S et al (2014) A spontaneously blinking fluorophore based on intramolecular spirocyclization for live-cell super-resolution imaging. Nature Chem 6(8):681–689Google Scholar
  72. Van Oijen AM, Köhler J, Schmidt J, Müller M, Brakenhoff GJ (1998) 3-dimensional super-resolution by spectrally selective imaging. Chem Phys Lett 292(1):183–187CrossRefGoogle Scholar
  73. Weiland Y, Lemmer P, Cremer C (2011) Combining fish with localisation microscopy: super-resolution imaging of nuclear genome nanostructures. Chromosom Res 19(1):5–23CrossRefGoogle Scholar
  74. Whelan DR, Bell TDM (2015) Image artifacts in single molecule localization microscopy: why optimization of sample preparation protocols matters. Sci Rep 5:7924CrossRefPubMedPubMedCentralGoogle Scholar
  75. Wood AJ, Lo T-W, Zeitler B, Pickle CS, Ralston EJ, Lee AH, Amora R, Miller JC, Leung E, Meng X et al (2011) Targeted genome editing across species using zfns and talens. Science 333(6040):307–307CrossRefPubMedPubMedCentralGoogle Scholar
  76. Xu K, Zhong G, Zhuang X (2013) Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science 339(6118):452–456CrossRefPubMedGoogle Scholar
  77. Zessin PJM, Finan K, Heilemann M (2012) Super-resolution fluorescence imaging of chromosomal dna. J Struct Biol 177(2):344–348CrossRefPubMedGoogle Scholar
  78. Zhimulëv IF (1996) Morphology and structure of polytene chromosomes. Academic Press, New YorkCrossRefGoogle Scholar
  79. Zipfel WR, Williams RM, Webb WW (2003) Nonlinear magic: multiphoton microscopy in the biosciences. Nature Biotechnol 21(11):1369–1377CrossRefGoogle Scholar
  80. Żurek-Biesiada D, Szczurek AT, Prakash K, Mohana GK, Lee H-K, Roignant J-Y, Birk U, Dobrucki JW, Cremer C (2015) Localization microscopy of dna in situ using vybrant dyecycle violet fluorescent probe: a new approach to study nuclear nanostructure at single molecule resolution. Exp Cell Res 343:97–106CrossRefPubMedGoogle Scholar
  81. Żurek-Biesiada D, Szczurek AT, Prakash K, Best G, Mohana GK, Lee H-K, Roignant J-Y, Dobrucki JW, Cremer C, Birk U (2016) Quantitative super-resolution localization microscopy of dna in situ using vybrant dyecycle violet fluorescent probe. Data Brief 7:157–171CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Heidelberg UniversityHeidelbergGermany
  2. 2.Institute of Molecular Biology (IMB)MainzGermany

Personalised recommendations