Skip to main content

An Efficient Side-Channel Protected AES Implementation with Arbitrary Protection Order

  • Conference paper
  • First Online:
Topics in Cryptology – CT-RSA 2017 (CT-RSA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10159))

Included in the following conference series:

Abstract

Passive physical attacks, like power analysis, pose a serious threat to the security of digital circuits. In this work, we introduce an efficient side-channel protected Advanced Encryption Standard (AES) hardware design that is completely scalable in terms of protection order. Therefore, we revisit the private circuits scheme of Ishai et al. [13] which is known to be vulnerable to glitches. We demonstrate how to achieve resistance against multivariate higher-order attacks in the presence of glitches for the same randomness cost as the private circuits scheme. Although our AES design is scalable, it is smaller, faster, and less randomness demanding than other side-channel protected AES implementations. Our first-order secure AES design, for example, requires only 18 bits of randomness per S-box operation and 6 kGE of chip area. We demonstrate the flexibility of our AES implementation by synthesizing it up to the 15\(^{\text {th}}\) protection order.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An earlier version of this work has been published online [12] under the title “Domain-Oriented Masking: Compact Masked Hardware Implementations with Arbitrary Protection Order”.

References

  1. Bilgin, B., Daemen, J., Nikov, V., Nikova, S., Rijmen, V., Assche, G.: Efficient and first-order dpa resistant implementations of Keccak. In: Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 187–199. Springer, Heidelberg (2014). doi:10.1007/978-3-319-08302-5_13

    Google Scholar 

  2. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: A more efficient AES threshold implementation. In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT 2014. LNCS, vol. 8469, pp. 267–284. Springer, Heidelberg (2014). doi:10.1007/978-3-319-06734-6_17

    Chapter  Google Scholar 

  3. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Trade-offs for threshold implementations illustrated on AES. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34(7), 1188–1200 (2015)

    Article  MATH  Google Scholar 

  4. Bilgin, B., Nikova, S., Nikov, V., Rijmen, V., Stütz, G.: Threshold implementations of all 3\(\,\times \,\)3 and 4\(\,\times \,\)4 S-boxes. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 76–91. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33027-8_5

    Chapter  Google Scholar 

  5. Canright, D.: A very compact S-box for AES. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 441–455. Springer, Heidelberg (2005). doi:10.1007/11545262_32

    Chapter  Google Scholar 

  6. Cnudde, T., Bilgin, B., Reparaz, O., Nikov, V., Nikova, S.: Higher-order threshold implementation of the AES S-box. In: Homma, N., Medwed, M. (eds.) CARDIS 2015. LNCS, vol. 9514, pp. 259–272. Springer, Heidelberg (2016). doi:10.1007/978-3-319-31271-2_16

    Chapter  Google Scholar 

  7. De Cnudde, T., Reparaz, O., Bilgin, B., Nikova, S., Nikov, V., Rijmen, V.: Masking AES with \(d+1\) shares in hardware. In: Gierlichs, B., Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 194–212. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53140-2_10

    Chapter  Google Scholar 

  8. Faust, S., Rabin, T., Reyzin, L., Tromer, E., Vaikuntanathan, V.: Protecting circuits from leakage: the computationally-bounded and noisy cases. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 135–156. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5_7

    Chapter  Google Scholar 

  9. Goodwill, G., Jun, B., Jaffe, J., Rohatgi, P.: A testing methodology for side-channel resistance validation. In: NIST Non-Invasive Attack Testing Workshop (2011)

    Google Scholar 

  10. Goubin, L., Patarin, J.: DES and differential power analysis the “Duplication” method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172. Springer, Heidelberg (1999). doi:10.1007/3-540-48059-5_15

    Chapter  Google Scholar 

  11. Gross, H.: DOM Protected Hardware Implementation of AES. https://github.com/hgrosz/aes-dom (2016)

  12. Gross, H., Mangard, S., Korak, T.: Domain-oriented masking: compact masked hardware implementations with arbitrary protection order. Cryptology ePrint Archive, Report 2016/486 (2016). http://eprint.iacr.org/2016/486

  13. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45146-4_27

    Chapter  Google Scholar 

  14. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). doi:10.1007/3-540-48405-1_25

    Google Scholar 

  15. Mangard, S., Popp, T., Gammel, B.M.: Side-channel leakage of masked CMOS gates. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 351–365. Springer, Heidelberg (2005). doi:10.1007/978-3-540-30574-3_24

    Chapter  Google Scholar 

  16. Mangard, S., Schramm, K.: Pinpointing the side-channel leakage of masked AES hardware implementations. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 76–90. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: a very compact and a threshold implementation of AES. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20465-4_6

    Chapter  Google Scholar 

  18. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS, vol. 4307, pp. 529–545. Springer, Heidelberg (2006). doi:10.1007/11935308_38

    Chapter  Google Scholar 

  19. Quisquater, J.-J., Samyde, D.: Electromagnetic analysis (EMA): measures and counter-measures for smart cards. In: Attali, I., Jensen, T. (eds.) E-smart 2001. LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001). doi:10.1007/3-540-45418-7_17

    Chapter  Google Scholar 

  20. Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidating masking schemes. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 764–783. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  21. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15031-9_28

    Chapter  Google Scholar 

  22. Trichina, E.: Combinational logic design for AES subbyte transformation on masked data. IACR Cryptology ePrint Archive, 2003 (2003)

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the Austrian Research Promotion Agency (FFG) under grant number 845589 (SCALAS). The HECTOR project has received funding from the European Unions Horizon 2020 research and innovation programme under grant agreement No. 644052. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 681402).

figure a

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannes Gross .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Gross, H., Mangard, S., Korak, T. (2017). An Efficient Side-Channel Protected AES Implementation with Arbitrary Protection Order. In: Handschuh, H. (eds) Topics in Cryptology – CT-RSA 2017. CT-RSA 2017. Lecture Notes in Computer Science(), vol 10159. Springer, Cham. https://doi.org/10.1007/978-3-319-52153-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52153-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52152-7

  • Online ISBN: 978-3-319-52153-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics