Comparative Mechanical Analysis Between Epoxy Composite Reinforced with Random Short Cuarua Fibers and Aligned Long Curaua Fibers

  • Natália O. R. de MacielEmail author
  • Carolina G. D. Ribeiro
  • Jordana Ferreira
  • Janaina S. da Vieira
  • Carlos Maurício Vieira
  • Frederico M. Margem
  • Sergio N. Monteiro
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)


Synthetic fibers have been used for many years to attend the demands required by the most technological fields, but their use have been questioned due to the impact of them on the environment. In this way, the natural fibers have received considerable attention because of some their characteristics, besides low cost, they are flexible, viable, renewable and considered abundant substitutes. Thus, this paper is about curaua fibers, which belong to the family Bromeliaceae and it intends to compare the mechanical strength between epoxy composite reinforced with random short curaua fibers and aligned long curaua fibers. The results show that aligned long curaua has higher mechanical strength.


Curaua fibers Composites Environment Mechanical strength 



The authors thank the support to this investigation by the Brazilian agencies: CNPq, CAPES, FAPERJ and TECNORTE/FENORTE.


  1. 1.
    Thakur, V. K. (2013). Green composites from natural resources (p. 406). Boca Raton, FL: CRC Press.Google Scholar
  2. 2.
    Ticoalu, A., Aravinthan, T., & Cardona, F. (2010). A review of current development in natural fiber composites for structural and infrastructure applications. In Southern Region Engineering Conference (SREC 2010), Toowoomba, Australia.Google Scholar
  3. 3.
    Cheung, H., Ho, M., Lau, K., Cardona, F., & Hui, D. (2009). Natural fiber-reinforced composites for bioengineering and environmental engineering applications. Composites Part B Engineering, 40(7), 655–663.CrossRefGoogle Scholar
  4. 4.
    Shalwan, A., & Yousif, B. F. (2013). In state of art: Mechanical and tribological behavior of polymeric composites based on natural fibers. Materials and Design, 48, 14–24.Google Scholar
  5. 5.
    Cao, Y., Shibata, S., & Fukumoto, I. (2006). Mechanical properties of biodegradable composites reinforced with bagasse fiber before and after alkali treatments. Composites Part A: Applied Science and Manufacturing, 37(3), 423–429.Google Scholar
  6. 6.
    Pickering, K. (2008). Properties and performance of natural-fiber composites (p. 576). Amsterdam: Elsevier.Google Scholar
  7. 7.
    Rowell, R. M., Han, J. S., & Bisen, S. S. (1997). Changes in fiber properties during the growing season. In R. M. Rowell, R. A. Young & J. K. Rowell (Eds.), Paper and composites from agro-based resources (pp. 23–38). Boca Raton, FL: CRC Lewis Publishers.Google Scholar
  8. 8.
    Westman, M. P., Fifield, L. S., Simmons, K. L., Laddha, S. G., & Kafentzis, T. A. (2010). Natural fiber composites: A review. Pacific Northwest National Laboratory.Google Scholar
  9. 9.
    Monteiro, S. N., Ferreira, A. S., & Lopes, F. P. D. (2009). Pullout tests of curaua fibers in epoxy matrix for evaluation of interfacial strength. In Proceedings of Characterization of Minerals, Metals and Materials—TMS Conference (pp. 1–7). San Francisco, USA.Google Scholar
  10. 10.
    Monteiro, S. N., Ferreira, A. S., & Lopes, F. P. D. (2009). Tensile properties of epoxy composites reinforced with continuous curaua fibers. In Proceedings of Characterization of Minerals, Metals and Materials—TMS Conference (pp. 1–7). San Francisco, USA.Google Scholar
  11. 11.
    Brown, D. C. E. (1998). Coefficient of variation. In Applied Multivariate Statistics in Geohydrology and Related Sciences (pp. 155–157) [Internet]. Berlin: Springer [citado 12 de setembro de 2016]. Disponível em:

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • Natália O. R. de Maciel
    • 1
    Email author
  • Carolina G. D. Ribeiro
    • 1
  • Jordana Ferreira
    • 1
  • Janaina S. da Vieira
    • 1
  • Carlos Maurício Vieira
    • 1
  • Frederico M. Margem
    • 2
  • Sergio N. Monteiro
    • 3
  1. 1.UENF, Advanced Materials Laboratory, LAMAVState University of the Northern Rio de JaneiroCampos dos GoytacazesBrazil
  2. 2.RedentorItaperunaBrazil
  3. 3.Military Institute of Engineering, IMEPraia VermelhaBrazil

Personalised recommendations