Advertisement

Nanocomposites Mechanical and Tribological Properties Using Graphene-Coated-SiC Nanoparticles (GCSiCNP) for Light Weight Applications

  • A. El Ghazaly
  • M. Shokeir
  • S. N. El Moghazi
  • A. Fathy
  • M. M. Emara
  • H. G. SalemEmail author
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

In the current work, Aluminum Alloy 2124-SiC/Graphene nanocomposite is fabricated via high energy milling followed by uniaxial cold compaction at 525 MPa, sintered at 450 °C, and followed by hot extrusion at 4:1 extrusion ratio. SiC nanoparticles (SiCNP) powders the G-micron-clusters forming G-coated-SiCNP (GCSiCNP) reinforcement filler, used for the reinforcement of AA2124 matrices via milling. The processed nanocomposite combines the properties suitable for dry wear resistant and self-lubricating solids. It is anticipated that the formation of GCSiCNP decreases the agglomeration of SiCNP producing uniform dispersion of the GCSiCNP reinforcement within the Aluminum matrices. Mechanical and wear resistance of the processed GCSiCNP nanocomposites were characterized compared to the milled AA2124 and AA2124-SiCNP nanocomposites processed under similar milling conditions. FESEM and XRD are used for the investigation of the milled powders crystallite size, lattice strain, and phases as well as powder morphology.

Keywords

Dual function Self-lubricating nanocomposites G-coated-SiCNP Ball milling Wear resistance 

Notes

Acknowledgements

Authors of the work would like to acknowledge the Youssef Jameel Science and Technology Research Center (YJSTRC) for facilitating the characterization of the tested composites. Extended gratitude is given to the effort exerted by Mr. Zakarya Taha and Eng. M. Bakr for their technical assistance.

References

  1. 1.
    Basavarjappa, S., Chandramohan, G., & Paulo Davim, J. (2007). Applications of Taguchi techniques to study dry sliding wear behavior of metal matrix composites. Materials & Design, 28(4), 1393–1398.Google Scholar
  2. 2.
    Palanikumar, K., Rajasekaran, T., & Paulo Davim, J. (2010). Modelling and analysis on wear behavior of metal matrix composites. In J. Paulo Davim (Ed.), Tribology of composite materials (pp. 157–174). New York, NY: NOVA Publishers.Google Scholar
  3. 3.
    Paulo Davim, J. (Ed.). (2012). Wear of advanced materials. London, UK: Wiley-ISTE.Google Scholar
  4. 4.
    Niskanen, P., & Mohn, W. R. (1988). Versatile metal matrix composites. Advanced Materials and Processes, 133(3), 39–41.Google Scholar
  5. 5.
    Hunt, M. (1989). Making metal matrix composites stronger and tougher. Mechanical Engineering, 7, 43–46.Google Scholar
  6. 6.
    Kempfer, L. (1990). Materials take hypersonic leap into space. Mechanical Engineering, 8, 19–22.Google Scholar
  7. 7.
    Hunt, M. (1990). Form and function in metal matrix composites. Mechanical Engineering, 6, 27–31.Google Scholar
  8. 8.
    Macke, A. J., Schultz, B., & Rohatgi, P. K. (2012). Metal matrix: Composites offer the automotive industry an opportunity to reduce vehicle weight, improve performance. Advanced Materials and Processes, 170(3), 19–23.Google Scholar
  9. 9.
    Christy, T. V., Murugan, N., & Kumar, S. (2010). A comparative study on the microstructures and mechanical properties of Al 6061 alloy and the MMC Al 6061/TiB2/12p. Journal of Minerals & Materials Characterization & Engineering, 9(1), 57–65.Google Scholar
  10. 10.
    Miracle, D. B. (2005). Metal matrix composites—From science to technological significance. Composites Science and Technology, 65(15), 2526–2540.CrossRefGoogle Scholar
  11. 11.
    El-Garaihy, W. H., Oraby, S. E., Rassoul, E. S. M., & Salem, H. G. (2015). On the effect of SiC content and processing temperature on relative density and hardness of hot compacted aluminum AA6061 composite-mathematical empirical and response surface approach. Journal of Materials Science Research, 4(3), 1–14.CrossRefGoogle Scholar
  12. 12.
    Prabu, S. B., Karunamoorthy, L., Kathiresan, S., & Mohan, B. (2006). Influence of stirring speed and stirring time on distribution of particles in cast metal matrix composite. Journal of Materials Processing Technology, 171(2), 268–273.CrossRefGoogle Scholar
  13. 13.
    Li, S., et al. (2016). Enhanced mechanical behavior and fabrication of silicon carbide particles covered by in-situ carbon nanotube reinforced 6061 aluminum matrix composites. Materials and Design, 107, 130–138.CrossRefGoogle Scholar
  14. 14.
    Ibrahim, I. A., Mohamed, F. A., & Lavernia, E. J. (1991). Particulate reinforced metal matrix composites—A review. Journal of Materials Science, 26(5), 1137–1156.CrossRefGoogle Scholar
  15. 15.
    Suh, Y. S., Joshi, S. P., & Ramesh, K. T. (2009). An enhanced continuum model for size-dependent strengthening and failure of particle-reinforced composites. Acta Materialia, 57(19), 5848–5861.CrossRefGoogle Scholar
  16. 16.
    Wang, Z., Song, M., Sun, C., Xiao, D., & He, Y. (2010). Effect of extrusion and particle volume fraction on the mechanical properties of SiC reinforced Al-Cu Alloy. Materials Science and Engineering A, 527(24–25), 6537–6542.CrossRefGoogle Scholar
  17. 17.
    Tjong, S. C. (2007). Novel nanoparticle-reinforced metal matrix composites with enhanced mechanical properties. Advanced Engineering Materials, 9(8), 639–652.CrossRefGoogle Scholar
  18. 18.
    Kollo, L., et al. (2011). Nano-silicon carbide reinforced aluminum produced by high-energy milling and hot consolidation. Materials Science and Engineering A, 528(21), 6606–6615.CrossRefGoogle Scholar
  19. 19.
    Shalaby, E. A. M., Churyumov, A. Y., Solonin, A. N., & Lotfy, A. (2016). Preparation and characterization of hybrid A359/(SiC + Si3N4) composites synthesized by stir/squeeze casting techniques. Materials Science and Engineering A, 674, 18–24.CrossRefGoogle Scholar
  20. 20.
    Jeon, C. H., et al. (2014). Material properties of graphene/aluminum metal matrix composites fabricated by friction stir processing. International Journal of Precision Engineering and Manufacturing, 15(6), 1235–1239.CrossRefGoogle Scholar
  21. 21.
    Salem, H. G., & Sadek, A. W. (2010). Fabrication of high performance PM nanocrystalline bulk AA2124. Journal of Materials and Engineering Performances, 19(3), 356–367.CrossRefGoogle Scholar
  22. 22.
    Salem, H. G., El-Eskandarany, S., Kandil, A., & Abdel Fattah, H. (2009). Bulk behavior of ball milled AA2124 nanostructured powders reinforced with TiC. Journal of Nanomaterials, 1–12.Google Scholar
  23. 23.
    Sadek, A., Salem, H. G., & Attallah, M. (2009). Nanocrystalline powder consolidation in AA2124 using uniaxial compaction and severe plastic deformation. Paper Presented at the San TMS 2009 Annual Meeting and Exhibition, San Francisco, California, February 15–19.Google Scholar
  24. 24.
    Sadek, A., & Salem, H. G. (2009). Controlling the processing parameters for consolidation of nanopowders into bulk nanostructured material. In: T. Hinklin & K. Lu (Eds.), Processing of nanoparticle structures and composites (pp. 1–12). Hoboken, NJ: Wiley.Google Scholar
  25. 25.
    Kumar, P. H. G., & Xavior, M. A. (2014). Graphene reinforced metal matrix composite (GRMMC): A review. Procedia Engineering, 97, 1033–1040.CrossRefGoogle Scholar
  26. 26.
    Sharma, P., Khanduja, D., & Sharma, S. (2015). Production of hybrid composite by a novel process and its physical comparison with single reinforced composites. Materials Today: Proceedings, 2, 2698–2707.Google Scholar
  27. 27.
    Flores-Zamora, M. I., Estrada-Guel, I., Gonalez-Hernandez, J., Miki-Yoshida, M., & Martinez-Sanchez, R. (2007). Aluminum-graphite composite produced by mechanical milling and hot extrusion. Journal of Alloys and Compounds, 434–435, 518–521.Google Scholar
  28. 28.
    Deaquino-Lara, R., et al. (2014). Structural characterization of aluminum alloy 7075-graphite composites fabricated by mechanical alloying and hot extrusion. Materials and Design, 53, 1104–1111.CrossRefGoogle Scholar
  29. 29.
    Al-Qutub, A., Khail, A., Saheb, N., & Hakeem, A. (2013). Wear and friction behavior of Al6061 alloy reinforced with carbon nanotubes. Wear, 297(1), 752–761.CrossRefGoogle Scholar
  30. 30.
    Bartolucci, S. F., et al. (2011). Graphene-aluminum nanocomposites. Materials Science and Engineering A, 528, 7933–7937.CrossRefGoogle Scholar
  31. 31.
    Ghazaly, A., Seif, B., & Salem, H. G. (2013). Mechanical and tribological properties of AA2124-graphene self-lubricating nanocomposite. Paper Presented at the San TMS 2013 Annual Meeting and Exhibition, Antonio, Texas, March 2–7, 2013.Google Scholar
  32. 32.
    Alizadeh, A., Abdollahi, A., & Biukani, H. (2015). Creep behavior and wear resistance of Al 5083 based hybrid composites reinforced with carbon nanotubes (CNTs) and boron carbide (B4C). Journal of Alloys and Compounds, 650, 783–793.CrossRefGoogle Scholar
  33. 33.
    Fallahdoost, H., Nouri, A., & Azimi, A. (2016). Dual functions of TiC nanoparticles on tribological performance of Al/graphite composites. Journal of Physics and Chemistry of Solids, 93, 137–144.CrossRefGoogle Scholar
  34. 34.
    Kaushik, N Ch., & Rao, R. N. (2016). Effect of grit size on two body abrasive wear of Al 6082 hybrid composites produced by stir casting method. Tribology International, 102, 52–60.CrossRefGoogle Scholar
  35. 35.
    Liu, J., et al. (2016). Graphene oxide and graphene nanosheet reinforced aluminum matrix composites: Powder synthesis and prepared composite characteristics. Materials and Design, 94, 87–94.CrossRefGoogle Scholar
  36. 36.
    Ted Guo, M. L., & Tsao, C.-Y. A. (2000). Tribological behavior of self-lubricating aluminum/SiC/graphite hybrid composites synthesized by the semi-solid powder-densification method. Composites Science and Technology, 60, 65–74.CrossRefGoogle Scholar
  37. 37.
    Varol, T., & Canakci, A. (2013). Effect of particle size and ratio of B4C reinforcement on properties and morphology of nanocrystalline Al2024-B4C composite powders. Powder Technology, 246, 462–472.CrossRefGoogle Scholar
  38. 38.
    Tabandeh-Khorshid, M., Omrani, E., Menezes, P. L., & Rohatgi, P. K. (2016). Tribological performances of self-lubricating aluminum matrix nanocomposites: Role of graphene nanoplatelets. Engineering Science and Technology, and International Journal, 19, 463–469.CrossRefGoogle Scholar
  39. 39.
    Jafari, M., Abbasi, M. H., Enayati, M. H., & Karimzadaeh, F. (2012). Mechanical properties of nanostructured A2024-MECNT composite prepared by optimized mechanical milling and hot pressing methods. Advanced Powder Technology, 23, 205–210.CrossRefGoogle Scholar
  40. 40.
    Carreno-Gallardo, C., Estrada-Guel, I., Lopez-Melendez, C., & Martinez-Sanchez, R. (2014). Dispersion of silicon carbide nanoparticles in a AA2024 aluminum alloy by a high-energy ball mill. Journal of Alloys and Compounds, 586, S68–S72.CrossRefGoogle Scholar
  41. 41.
    Shokrieh, M. M., Hosseinkhani, M. R., Naimi-Jamal, M. R., Tourani, H. (2013). Nanoindentation and nanoscratch investigations on graphene-based nanocomposites. Polymers Testing, 32(1), 45–51.Google Scholar
  42. 42.
    Hodge, A. M., & Nieh, T. G. (2004). Evaluating abrasive swear of amorphous alloys using nanoscratch technique. Intermetallics, 12, 741–748.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • A. El Ghazaly
    • 1
  • M. Shokeir
    • 3
  • S. N. El Moghazi
    • 3
  • A. Fathy
    • 3
  • M. M. Emara
    • 2
  • H. G. Salem
    • 3
    Email author
  1. 1.American UniversityCairoEgypt
  2. 2.Manufacturing Engineering DepartmentCanadian International College, El Tagamoa El Khamis, South of Police AcademyNew CairoEgypt
  3. 3.Mechanical Engineering DepartmentAmerican University in Cairo, American University in CairoNew CairoEgypt

Personalised recommendations