Injectability Evaluation of Bone-Graft Substitutes Based on Carrageenan and Hydroxyapatite Nanorods

  • J. I. GonzálezEmail author
  • C. P. O. Ossa
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)


The first injectable bone substitutes were introduced for orthopedic trauma applications since more than a decade, and over recent years the number of commercial products has dramatically increased. These substitutes can be injected into a fracture space for augmentation as an alternative to bone graft, or around a screw for augmentation if the bone is weak, so the injectability of the substitute must be optimum with a good behavior within and our of syringe. The aim of this work was to study the injectability of substitutes based on carrageenan CG with 1, 1.5, 2.5 and 60 wt% hydroxyapatite HA nanorods. Initially carrageenan and hydroxyapatite were characterized and then injectability tests were performed with the syringe between the compression plates of a testing machine. The material also was characterized by scanning electron microscopy. The results revealed that none of the samples had phases separation and they did not exceed 300 N of force (97.08, 107.84 and 149 N to each material), that the injectability was 95.71, 93.69 and 90.63% and the CG was a good vehicle for HA nanorods. Therefore, the substitutes are adequate for manual handling.


Injectable bone substitute Carrageenan Hydroxyapatite Injectability Nanorods 



The authors are thankful with Biomaterials Research Group and Colciencias (2016-257 project) for providing the necessary reagents and studies during the development of this project, also they wish to thank to Diego Giraldo from GIPIMME Research Group of University of Antioquia for allowing the use of mechanical testing machine.

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Cui, X., Zhang, Y., Wang, H., Gu, Y., Li, L., Zhou, J., et al. (2016). An injectable borate bioactive glass cement for bone repair: Preparation, bioactivity and setting mechanism. Journal of Non-Crystalline Solids, 432, 150.CrossRefGoogle Scholar
  2. 2.
    Morais, D. S., Rodrigues, M. A., Silva, T. I., Lopes, M. A., Santos, M., Santos, J. D., et al. (2013). Development and characterization of novel alginate-based hydrogels as vehicles for bone substitutes. Carbohydrate polymers, 95, 134.Google Scholar
  3. 3.
    Colon, D. A., Yoon, B. J. V., Russell, T. A., Cammisa, F. P., & Abjornson, C. (2015). Assessment of the injection behavior of commercially available bone BSMs for Subchondroplasty® procedures. The Knee, 22, 597.CrossRefGoogle Scholar
  4. 4.
    Dorati, R., Colonna, C., Genta, I., De Trizio, A., Modena, T., Klöss, H., et al. (2015). In vitro characterization of an injectable in situ forming composite system for bone reconstruction. Polymer Degradation and Stability, 119, 151.Google Scholar
  5. 5.
    Tulyaganov, D. U., Reddy, A. A., Siegel, R., Ionescu, E., Riedel, R., & Ferreira, J. M. F. (2015). Synthesis and in vitro bioactivity assessment of injectable bioglass−organic pastes for bone tissue repair. Ceramics International.Google Scholar
  6. 6.
    Song, H. Y., Rahman, A. E., & Lee, B. T. (2009). Fabrication of calcium phosphate-calcium sulfate injectable bone substitute using chitosan and citric acid. Journal of Materials Science: Materials in Medicine, 20, 935.Google Scholar
  7. 7.
    Liu, W., Zhang, J., Rethore, G., Khairoun, K., Pilet, P., Tancret, F., et al. (2014). A novel injectable, cohesive and toughened Si-HPMC (silanized-hydroxypropyl methylcellulose) composite calcium phosphate cement for bone substitution. Acta Biomaterialia, 10, 3335.CrossRefGoogle Scholar
  8. 8.
    Neves, N., Campos, B. B., Almeida, I. F., Costa, P. C., Cabral, A. T., Barbosa, M. A., et al. (2016). Strontium-rich injectable hybrid system for bone regeneration. Materials Science and Engineering: C, 59, 818.Google Scholar
  9. 9.
    Liu, W., Zhang, J., Weiss, P., Tancret, F., & Bouler, J. M. (2013). The influence of different cellulose ethers on both the handling and mechanical properties of calcium phosphate cements for bone substitution. Acta Biomaterialia, 9, 5740.CrossRefGoogle Scholar
  10. 10.
    Jin, X., Zhuang, J., Zhang, Z., Guo, H., & Tan, J. (2015). Hydrothermal synthesis of hydroxyapatite nanorods in the presence of sodium citrate and its aqueous colloidal stability evaluation in neutral pH. Journal of Colloid and Interface Science, 443, 125.CrossRefGoogle Scholar
  11. 11.
    Sadat-Shojai, M., Atai, M., Nodehi, A., & Khanlar, L. N. (2010). Hydroxyapatite nanorods as novel fillers for improving the properties of dental adhesives: Synthesis and application. Dental Materials, 26, 471.CrossRefGoogle Scholar
  12. 12.
    Prajapati, V. D., Maheriya, P. M., Jani, G. K., & Solanki, H. K. (2014). Carrageenan: A natural seaweed polysaccharide and its applications. Carbohydrate Polymers, 105, 97.CrossRefGoogle Scholar
  13. 13.
    Li, L., Ni, R., Shao, Y., & Mao, S. (2014). Carrageenan and its applications in drug delivery. Carbohydrate Polymers, 103, 1.CrossRefGoogle Scholar
  14. 14.
    Campo, V. L., Kawano, D. F., Da Silva, D. B., & Carvalho, I. (2009). Carrageenans: Biological properties, chemical modifications and structural analysis—A review. Carbohydrate Polymers, 77, 167.CrossRefGoogle Scholar
  15. 15.
    Bohner, M., & Baroud, G. (2005). Injectability of calcium phosphate pastes. Biomaterials, 26, 1553.CrossRefGoogle Scholar
  16. 16.
    Zhang, J., Liu, W., Gauthier, O., Sourice, S., Pilet, P., Rethore, G., et al. (2016). A simple and effective approach to prepare injectable macroporous calcium phosphate cement for bone repair: Syringe-foaming using a viscous hydrophilic polymeric solution. Acta Biomaterialia, 31, 326.CrossRefGoogle Scholar
  17. 17.
    Prado-Fernández, J., Rodrıguez-Vázquez, J. A., Tojo, E., & Andrade, J. M. (2003). Quantitation of κ-, ι-and λ-carrageenans by mid-infrared spectroscopy and PLS regression. Analytica Chimica Acta, 480, 23.Google Scholar
  18. 18.
    Gómez-Ordóñez, E., & Rupérez, P. (2011). FTIR-ATR spectroscopy as a tool for polysaccharide identification in edible brown and red seaweeds. Food Hydrocolloids, 25, 1514.CrossRefGoogle Scholar
  19. 19.
    Chang, M. C., & Tanaka, J. (2002). FT-IR study for hydroxyapatite/collagen nanocomposite cross-linked by glutaraldehyde. Biomaterials, 23, 4811.CrossRefGoogle Scholar
  20. 20.
    Mansur, H. S., Sadahira, C. M., Souza, A. N., & Mansur, A. A. P. (2008). FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Materials Science and Engineering C, 28, 539.CrossRefGoogle Scholar
  21. 21.
    Lin, K., Chang, J., Cheng, R., & Ruan, M. (2007). Hydrothermal microemulsion synthesis of stoichiometric single crystal hydroxyapatite nanorods with mono-dispersion and narrow-size distribution. Materials Letters, 61, 1683.CrossRefGoogle Scholar
  22. 22.
    Jiménez, E. B. M. (2010). Espumas Inyectables de Hidroxiapatita Obtenidas Por El Método de Espumado de La Fase Líquida de Un Cemento de Fosfato Tricálcico Alfa, Universidad Politécnica de Cataluña.Google Scholar
  23. 23.
    Navarro, M. E. (2005). Desarrollo Y Caracterización de Materiales Biodegradables Para Regeneración Ósea, Universidad Politécnica de Cataluña.Google Scholar
  24. 24.
    Swain, S. K., & Sarkar, D. (2011). A comparative study: Hydroxyapatite spherical nanopowders and elongated nanorods. Ceramic International, 37, 2927.CrossRefGoogle Scholar
  25. 25.
    Sadat-Shojai, M., Khorasani, M.-T., Dinpanah-Khoshdargi, E., & Jamshidi, A. (2013). A comparative study: Hydroxyapatite spherical nanopowders and elongated nanorods. Acta Biomaterialia, 9, 7591.CrossRefGoogle Scholar
  26. 26.
    Tan, J., Chen, M., & Xia, J. (2009). Water-dispersible hydroxyapatite nanorods synthesized by a facile method. Applied Surface Science, 255, 8774.CrossRefGoogle Scholar
  27. 27.
    Liu, H., Li, H., Cheng, W., Yang, Y., Zhu, M., & Zhou, C. (2006). Novel injectable calcium phosphate/chitosan composites for bone substitute materials. Acta Biomaterialia, 2, 557.Google Scholar
  28. 28.
    Krebs, J., Ferguson, S. J., Bohner, M., Baroud, G., Steffen, T., & Heini, P. F. (2005). Clinical measurements of cement injection pressure during vertebroplasty. Spine, 30, E118 (Phila. Pa. 1976).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  1. 1.Biomaterials Research Group, Engineering FacultyUniversity of AntioquiaMedellinColombia

Personalised recommendations