Microstructure and Hardness of Subzero Quenched and Heat Treated Ti-6Al-4V Alloy

  • Abdelrahman Abbas
  • Andrew Seif
  • Iman El-MahallawiEmail author
  • Waleed Khalifa
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)


Titanium is one of the most important materials nowadays with promising lightweight demanding applications. However, despite its high strength-to-weight ratio, high temperature stability and high corrosion resistance, it has relatively low hardness. It is shown in this work that enhanced hardness values could be obtained for Ti-6Al-4V Alloy after heat treatment consisting of subzero quenching in a medium made up of dry ice and alcohol, followed by an aging treatment. The proposed heat treatment resulted an increase of 25% in the hardness of the alloy, compared to 5% reported in literature.


Ti-6Al-4V Heat treatment Hardness 


  1. 1.
    Leyens, C., & Peters, M. (2003). Titanium and titanium alloys: Fundamentals and applications (pp. 1–36). Weinheim: Wiley-VCH.CrossRefGoogle Scholar
  2. 2.
    Swalla, D. R., Neu, R. W., & Mcdowell, D. L. (2004). Microstructural characterization of Ti-6Al-4V subjected to fretting. Journal of Tribology, 126(4), 809–816.CrossRefGoogle Scholar
  3. 3.
    Morita, T., Hatsuoka, K., Iizuka, T., & Kawasaki, K. (2005). Strengthening of Ti-6Al-4V alloy by short-time duplex heat treatment. Materials Transactions, 46(7), 1681–1686.CrossRefGoogle Scholar
  4. 4.
    Reda, R., Nofal, A., & Hussein, A. (2013). Effect of single and duplex stage heat treatment on the microstructure and mechanical properties of cast Ti-6Al-4V alloy. Metallography, Microstructure, and Analysis, 2(6), 388–393. doi: 10.1007/s13632-013-0103-7 CrossRefGoogle Scholar
  5. 5.
    Oh, S.-T., Woo, K.-D., Lee, T., & Lee, H.-C. (2015). Effects of heat treatment on mechanical properties of VAR-Cast Ti-6Al-4V alloy. In Proceedings of the World Congress on Mechanical, Chemical, and Material Engineering (MCM 2015), Barcelona, Spain, July 20–21, 2015.Google Scholar
  6. 6.
    Donachie, M. J., Jr. (2001). Heat treating titanium and its alloys. Heat Treating Progress, ASME.Google Scholar
  7. 7.
    Technical Data Sheet. (2012). ATI Ti-6Al-4V, Grade 5 titanium alloy (UNS R56400). Pittsburgh, PA 15222-5479 U.S.A.: Allegheny Technologies Incorporated. Google Scholar
  8. 8.
    Pinke, P., Caplovic, L., & Kovacs, T. (2011). The influence of heat treatment on the microstructure of the casted Ti-6Al-4V titanium alloy. Slovak University of Technology Bratislava. Web, 11.Google Scholar
  9. 9.
    Gammon, L. M., Briggs, R. D., Packard, J. M., Batson, K. W., Boyer, R., & Domby, C. W. (2004). Metallography and microstructures of titanium and its alloys. In G. F. Vander Voort (Ed.), ASM handbook: Metallography and microstructures (Vol. 9, pp. 899–917).Google Scholar
  10. 10.
    Sridhar, G., Gopalan, R., & Sarma, D. (1987). A microstructural characterization of solution-treated titanium alloy Ti-6Al-4V. Metallography, 20(3), 291–310.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • Abdelrahman Abbas
    • 1
  • Andrew Seif
    • 1
  • Iman El-Mahallawi
    • 2
    Email author
  • Waleed Khalifa
    • 2
  1. 1.Faculty of Engineering, Mechanical Engineering DepartmentThe British University in EgyptEl SheroukEgypt
  2. 2.Faculty of Engineering, Metallurgical Engineering DepartmentCairo UniversityGizaEgypt

Personalised recommendations