Izod Impact Tests in Polyester Matrix Composites Reinforced with Jute Fabric

  • Foluke S. de Assis
  • Artur C. Pereira
  • Fábio O. BragaEmail author
  • Sergio N. Monteiro
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)


Jute fibers are among the lignocellulosic fibers with greater potential for use as fabric reinforcing polymer composites. This study evaluated the impact resistance of this type of composite. Specimens were made with up to 30% in volume of jute fabric in an Izod normalized mold. The jute fabric was embedded with polyester resin and cured at room temperature for 24 h. The specimens were tested in Izod impact pendulum and the fracture surfaces were examined by scanning electron microscopy (SEM). The impact resistance of composites increased linearly with the relative amount of jute fabric reinforcing the composite. This performance was associated with the difficulty of rupture imposed by the jute fabric as well as the type of cracks resulting from the interaction jute fiber/polyester matrix that corroborate the energy absorption at the impact test.


Jute fabric Composite Polyester matrix Izod impact tests 


  1. 1.
    Wambua, P., Ivens, I., & Verpoest, I. (2003). Natural fibers: Can they replace glass and fibre reinforced plastics? Composites Science and Technology, 63, 1259–1264.CrossRefGoogle Scholar
  2. 2.
    Gore, A. (2006). An inconvenient truth. The planetary emergency of global warming and what we can do about it. Emmaus, Pennsylvania, USA: Rodale Press.Google Scholar
  3. 3.
    Hill, S. (1997). Cars that grow on trees. New Scientists, 153(2067), 36–39.Google Scholar
  4. 4.
    Larbig, H., Scherzer, H., Dahlke, B., & Poltrock, R. (1998). Natural fiber reinforced foams based on renewable resources for automotive interior applications. Journal of Cellular Plastics, 34, 361–379.CrossRefGoogle Scholar
  5. 5.
    Marsh, G. (2003). Next step for automotive materials. Materials Today, 6(4), 36–43.CrossRefGoogle Scholar
  6. 6.
    Zah, R., Hischier, R., Leão, A. L., & Brown, I. (2007). Curaua fibers in automobile industry—A sustainability assessment. Journal of Cleaner Production, 15, 1032–1040.CrossRefGoogle Scholar
  7. 7.
    Bledzki, A. K., & Gassan, J. (1999). Composites reinforced with cellulose-based fibers. Progress in Polymer Science, 4, 221–274.CrossRefGoogle Scholar
  8. 8.
    Nabi Sahed, D., & Jog, J. P. (1999). Natural fiber polymer composites: A review. Advances in Polymer Technology, 18, 221–274.Google Scholar
  9. 9.
    Mohanty, A. K., Misra, M., & Drzal, L. T. (2002). Sustainable biocomposites from renewable resources: Opportunities and challenges in the green material world. Journal of Polymers and the Environment, 10, 19–26.CrossRefGoogle Scholar
  10. 10.
    Satyanarayana, K. G., Guimarães, J. L., & Wypych, F. (2007). Studies on lignocellulosic fibers of Brazil. Part I: Source, production, morphology, properties and applications. Composites: Part A, 38, 1694–1709.CrossRefGoogle Scholar
  11. 11.
    Crocker, J. (2008). Natural materials innovative natural composites. Materials Technology, 2–3, 174–178.CrossRefGoogle Scholar
  12. 12.
    Monteiro, S. N., Lopes, F. P. D., Ferreira, A. S., & Nascimento, D. C. O. (2009). Natural fiber polymer matrix composites: Cheaper, tougher and environmentally friendly. JOM Journal of the Minerals Metals and Materials Society, 61, 17–22.CrossRefGoogle Scholar
  13. 13.
    Monteiro, S. N., Lima, E. P., Louro, L. H. L., Silva, L. C., & Drelich, J. W. (2014, November). Unlocking function of aramida fibers in multilayered ballistic armor. Accept for publication in Metallurgical and Materials Transactions A.Google Scholar
  14. 14.
    Monteiro, S. N., Candido, V. S., Braga, F. O., Bolzan, L. T., Weber, R. P., & Drelich, J. W. (2016, March). Sugarcane bagasse waste in composites for multilayered armor. European Polymer Journal.Google Scholar
  15. 15.
    Leão, A. L., Tan, I. H., & Caraschi, J. C. (1998). Curaua fiber—A tropical natural fiber from Amazon—Potential and applications in composites. In International Conference on Advanced Composites, Hurghada, Egito, Maio, pp. 557–564.Google Scholar
  16. 16.
    Monteiro, S. N., Margem, F. M., & Santos, L. F. L., Jr. (2008, November). Ensaios de impacto Izod em compósitos poliméricos reforçados com fibras de rami. In 18° Congresso Brasileiro de Engenharia e Ciência dos Materiais, CBECIMAT 2008, Porto de Galinhas, PE (pp. 1–12).Google Scholar
  17. 17.
    Monteiro, S. N., Ferreira, A. S., & Lopes, F. P. D. (2009, March). Izod impact energy of polyester matrix composites reinforced with aligned curaua fibers. In Mineral, Metals & Materials Characterization Symposium—TMS Conference, San Francisco, EUA (pp. 1–8).Google Scholar
  18. 18.
    Monteiro, S. N., Costa, L. L., Lopes, F. P. D., & Terrones, L. A. H. (2008, March). Characterization of the impact resistance of coir fiber reinforced polyester composites. In Mineral, Metals & Materials Characterization Symposium—TMS Conference, New Orleans, LA, USA (pp. 1–6).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • Foluke S. de Assis
    • 1
  • Artur C. Pereira
    • 1
  • Fábio O. Braga
    • 1
    Email author
  • Sergio N. Monteiro
    • 1
  1. 1.Military Institute of Engineering, IMERio de JaneiroBrazil

Personalised recommendations