Skip to main content

Analysis of Coir Fiber Porosity

  • Conference paper
  • First Online:
Book cover Proceedings of the 3rd Pan American Materials Congress

Abstract

Lignocellulosic natural fibers exhibit high variation in mechanical properties values due to their heterogeneity. Recent studies have shown that the dispersion of these properties depends on the diameter of the fiber. A possible explanation for the tendency of low mechanical properties with large diameter is the high probability of defects into the fiber. However, no study has yet investigated the relation between the diameter and defects of natural fibers. Hence, in the present work the total porosity of coir fiber (Cocos Nucifera L.) was estimated. A statistical analysis was carried out on a batch of about 100 fibers and the geometric density was measured by using a stereomicroscope. The closed and open porosity as well as the density of the fiber were quantified by helium pycnometry method. The values obtained were correlated with the diameter of each analyzed fiber. Results made it possible a more detailed knowledge of the porous structure of the fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Monteiro, S. N., et al. (2009). Natural-fiber polymer-matrix composites: Cheaper, tougher, and environmentally friendly—An overview. JOM Journal of the Minerals Metals and Materials Society, 61(1), 17–22.

    Article  Google Scholar 

  2. Monteiro, S. N., et al. (2011). Natural lignocellulosic fibers as engineering materials—An overview. Metallurgical and Materials Transactions A, 42A, 2963–2974.

    Article  Google Scholar 

  3. Suddell, B. C., et al. (2002). A survey into the application of natural fibre composites in the automobile industry. In Proceedings of the 4th International Symposium on Natural Polymers and Composites—ISNAPol (pp. 455–461). São Paulo, Brazil: ABPol.

    Google Scholar 

  4. Marsh, G. (2003). Next step for automotive materials. Materials Today, 6(4), 36–43.

    Article  Google Scholar 

  5. Hill, S. (1997). Cars that grow on trees. New Scientists, 153(2067), 36–39.

    Google Scholar 

  6. Zah, R., et al. (2007). Curaua fibers in automobile industry—A sustainability assessment. Journal of Cleaner Production, 15, 1032–1040.

    Article  Google Scholar 

  7. Hill, C. A. S., & Khalil, H. P. S. A. (2000). The effect of environmental exposure upon the mechanical properties of coir or oil palm fiber reinforced composites. Journal of Applied Polymer Science, 77, 1322–1330.

    Article  Google Scholar 

  8. Rout, J., et al. (2001). The influence of fibre treatment on the performance of coir-polyester composites. Composites Science and Technology, 61, 1303–1310.

    Article  Google Scholar 

  9. Monteiro, S. N., Lopes, F. P. D., & d’Almeida, J. R. M. (2005). Mechanical strength of polyester matrix composites reinforced with coconut fiber wastes. Revista Materia, 10(4), 571–576.

    Google Scholar 

  10. Monteiro, S. N., et al. (1998). Sugar cane bagasse waste as reinforcement in low cost composites. Advanced Performance Materials, 5(3), 183–191.

    Article  Google Scholar 

  11. Kulkarni, A. G., Satyanarayana, K. G., Sukumaran, K., & Rohatgi, P. K. (1981). Mechanical behavior of coir fibers under tensile load. Journal of Materials Science, 16, 905–914.

    Article  Google Scholar 

  12. Kulkarni, A. G., Satyanarayana, K. G., Rohatgi, P. K., & Vijayan, K. (1983). Mechanical properties of banana fibers. Journal Materials Science, 18, 2290–2296.

    Article  Google Scholar 

  13. Murkherjee, P. S., & Satyanarayana, K. G. (1984). Structure and properties of some vegetable fibers—Part 1: Sisal fiber. Journal of Materials Science, 19, 3925–3934.

    Article  Google Scholar 

  14. Mukherjee, P. S., & Satyanarayana, K. G. (1986). Structure and properties of some vegetable fibers—Part 2: Pineapple fiber. Journal of Materials Science, 21, 51–56.

    Article  Google Scholar 

  15. Murkherjee, P. S., & Satyanarayana, K. G. (1986). Structure and properties of some vegetable fibers—Part 3: Talipot and palmyrah fibres. Journal of Materials Science, 21, 57–63.

    Article  Google Scholar 

  16. Bledzki, A. K., & Gassan, J. (1999). Composites reinforced with cellulose-based fibers. Progress in Polymer Science, 4, 221–274.

    Article  Google Scholar 

  17. Monteiro, S. N., Satyanarayana, K. G., & Lopes, F. P. D. (2010). High strength natural fibers for improved polymer matrix composites. Materials Science Forum, 638–642, 961–966.

    Article  Google Scholar 

  18. Inacio, W. P., Lopes, F. P. D., & Monteiro, S. N. (2010). Tensile strength as a function of sisal fiber diameter through a Weibull analysis. In Proceedings of Biomaterials Symposium, 1st TMS-ABM International Materials Congress, Rio de Janeiro, Brazil (pp. 1–10).

    Google Scholar 

  19. Margem, F. M., Bravo Neto, J., & Monteiro, S. N. (2010). Ramie fibers mechanical properties evaluation by the Weibull analysis. In Proceedings of 19th Brazilian Congress on Materials Science and Engineering, Campos do Jordão, Brazil (pp. 1–10) (in Portuguese).

    Google Scholar 

  20. Ferreira, A. S., Monteiro, S. N., & Lopes, F. P. D. (2009). Curaua fiber mechanical properties evaluation by the Weibull analysis. In Proceedings of 64th International Congress of the Brazilian Association for Metallurgy and Materials, Belo Horizonte, Brazil (in Portuguese) (pp. 1–12).

    Google Scholar 

  21. Bevitori, A. B., Silva, I. L. A., & Monteiro, S. N. (2010). Weibull analysis of the tensile strength variation with diameter for jute fibers. In Proceedings of Biomaterials Symposium, 1st TMS-ABM International Materials Congress, Rio de Janeiro, Brazil (pp. 1–10).

    Google Scholar 

  22. Costa, L. L., Loiola, R. L., & Monteiro, S. N. (2010). Tensile strength of bamboo fibers: Weibull analysis to characterize the diameter dependence. In Proceedings of Biomaterials Symposium, 1st TMS-ABM International Materials Congress, Rio de Janeiro, Brazil (pp. 1–10).

    Google Scholar 

  23. Santafe, H. P. G., Jr., Monteiro, S. N., & Costa, L. L. (2009). Weibull distribution as an instrument of statistical analysis for coir fiber tensile tests. In Proceedings of 64th International Congress of the Brazilian Association for Metallurgy and Materials, Belo Horizonte, Brazil (pp. 1–12) (in Portuguese).

    Google Scholar 

  24. Nascimento, D. C. O., Motta, L. C., & Monteiro, S. N. (2010). Weibull analysis of tensile tested piassava fibers with different diameters. In Proceedings of Characterization of Minerals, Metals and Materials SymposiumTMS Conference, Seattle, WA (pp. 1–8).

    Google Scholar 

  25. Portela, T. G. R., Costa, L. L., Lopes, F. P. D., & Monteiro, S. N. (2010). Characterization of fibers from different parts of the buriti palm tree. In Proceedings of Characterization of Minerals, Metals and Materials SymposiumTMS Conference, Seattle, WA (pp. 1–7).

    Google Scholar 

  26. IBGE. (2016). Systematic survey of agricultural production (Vol. 29, no. 7, p. 5). Rio de Janeiro, RJ: IBGE.

    Google Scholar 

  27. Jayavani, S., Deka, H., Varghese, T. O., & Nayak, S. K. (2015). Recent development and future trends in coir fiber reinforced green polymer composites: Review and evaluation. Polymer Composites.

    Google Scholar 

  28. Holbery, J., & Houston, D. (2006). Natural-fiber-reinforced polymer composites in automotive applications. JOM Journal of the Minerals Metals and Materials Society, 58(11), 80–86.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support to this investigation by the Brazilian agencies CNPq, CAPES, and FAPERJ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Neves Monteiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Minerals, Metals & Materials Society

About this paper

Cite this paper

da Luz, F.S., Monteiro, S.N. (2017). Analysis of Coir Fiber Porosity. In: Meyers, M., et al. Proceedings of the 3rd Pan American Materials Congress. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-52132-9_32

Download citation

Publish with us

Policies and ethics