Advertisement

Analysis of Coir Fiber Porosity

  • Fernanda Santos da Luz
  • Sergio Neves MonteiroEmail author
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

Lignocellulosic natural fibers exhibit high variation in mechanical properties values due to their heterogeneity. Recent studies have shown that the dispersion of these properties depends on the diameter of the fiber. A possible explanation for the tendency of low mechanical properties with large diameter is the high probability of defects into the fiber. However, no study has yet investigated the relation between the diameter and defects of natural fibers. Hence, in the present work the total porosity of coir fiber (Cocos Nucifera L.) was estimated. A statistical analysis was carried out on a batch of about 100 fibers and the geometric density was measured by using a stereomicroscope. The closed and open porosity as well as the density of the fiber were quantified by helium pycnometry method. The values obtained were correlated with the diameter of each analyzed fiber. Results made it possible a more detailed knowledge of the porous structure of the fiber.

Keywords

Coir fibers Lignocellulosic fibers Porosity Diameter 

Notes

Acknowledgements

The authors acknowledge the support to this investigation by the Brazilian agencies CNPq, CAPES, and FAPERJ.

References

  1. 1.
    Monteiro, S. N., et al. (2009). Natural-fiber polymer-matrix composites: Cheaper, tougher, and environmentally friendly—An overview. JOM Journal of the Minerals Metals and Materials Society, 61(1), 17–22.CrossRefGoogle Scholar
  2. 2.
    Monteiro, S. N., et al. (2011). Natural lignocellulosic fibers as engineering materials—An overview. Metallurgical and Materials Transactions A, 42A, 2963–2974.CrossRefGoogle Scholar
  3. 3.
    Suddell, B. C., et al. (2002). A survey into the application of natural fibre composites in the automobile industry. In Proceedings of the 4th International Symposium on Natural Polymers and Composites—ISNAPol (pp. 455–461). São Paulo, Brazil: ABPol.Google Scholar
  4. 4.
    Marsh, G. (2003). Next step for automotive materials. Materials Today, 6(4), 36–43.CrossRefGoogle Scholar
  5. 5.
    Hill, S. (1997). Cars that grow on trees. New Scientists, 153(2067), 36–39.Google Scholar
  6. 6.
    Zah, R., et al. (2007). Curaua fibers in automobile industry—A sustainability assessment. Journal of Cleaner Production, 15, 1032–1040.CrossRefGoogle Scholar
  7. 7.
    Hill, C. A. S., & Khalil, H. P. S. A. (2000). The effect of environmental exposure upon the mechanical properties of coir or oil palm fiber reinforced composites. Journal of Applied Polymer Science, 77, 1322–1330.CrossRefGoogle Scholar
  8. 8.
    Rout, J., et al. (2001). The influence of fibre treatment on the performance of coir-polyester composites. Composites Science and Technology, 61, 1303–1310.CrossRefGoogle Scholar
  9. 9.
    Monteiro, S. N., Lopes, F. P. D., & d’Almeida, J. R. M. (2005). Mechanical strength of polyester matrix composites reinforced with coconut fiber wastes. Revista Materia, 10(4), 571–576.Google Scholar
  10. 10.
    Monteiro, S. N., et al. (1998). Sugar cane bagasse waste as reinforcement in low cost composites. Advanced Performance Materials, 5(3), 183–191.CrossRefGoogle Scholar
  11. 11.
    Kulkarni, A. G., Satyanarayana, K. G., Sukumaran, K., & Rohatgi, P. K. (1981). Mechanical behavior of coir fibers under tensile load. Journal of Materials Science, 16, 905–914.CrossRefGoogle Scholar
  12. 12.
    Kulkarni, A. G., Satyanarayana, K. G., Rohatgi, P. K., & Vijayan, K. (1983). Mechanical properties of banana fibers. Journal Materials Science, 18, 2290–2296.CrossRefGoogle Scholar
  13. 13.
    Murkherjee, P. S., & Satyanarayana, K. G. (1984). Structure and properties of some vegetable fibers—Part 1: Sisal fiber. Journal of Materials Science, 19, 3925–3934.CrossRefGoogle Scholar
  14. 14.
    Mukherjee, P. S., & Satyanarayana, K. G. (1986). Structure and properties of some vegetable fibers—Part 2: Pineapple fiber. Journal of Materials Science, 21, 51–56.CrossRefGoogle Scholar
  15. 15.
    Murkherjee, P. S., & Satyanarayana, K. G. (1986). Structure and properties of some vegetable fibers—Part 3: Talipot and palmyrah fibres. Journal of Materials Science, 21, 57–63.CrossRefGoogle Scholar
  16. 16.
    Bledzki, A. K., & Gassan, J. (1999). Composites reinforced with cellulose-based fibers. Progress in Polymer Science, 4, 221–274.CrossRefGoogle Scholar
  17. 17.
    Monteiro, S. N., Satyanarayana, K. G., & Lopes, F. P. D. (2010). High strength natural fibers for improved polymer matrix composites. Materials Science Forum, 638–642, 961–966.CrossRefGoogle Scholar
  18. 18.
    Inacio, W. P., Lopes, F. P. D., & Monteiro, S. N. (2010). Tensile strength as a function of sisal fiber diameter through a Weibull analysis. In Proceedings of Biomaterials Symposium, 1st TMS-ABM International Materials Congress, Rio de Janeiro, Brazil (pp. 1–10).Google Scholar
  19. 19.
    Margem, F. M., Bravo Neto, J., & Monteiro, S. N. (2010). Ramie fibers mechanical properties evaluation by the Weibull analysis. In Proceedings of 19th Brazilian Congress on Materials Science and Engineering, Campos do Jordão, Brazil (pp. 1–10) (in Portuguese).Google Scholar
  20. 20.
    Ferreira, A. S., Monteiro, S. N., & Lopes, F. P. D. (2009). Curaua fiber mechanical properties evaluation by the Weibull analysis. In Proceedings of 64th International Congress of the Brazilian Association for Metallurgy and Materials, Belo Horizonte, Brazil (in Portuguese) (pp. 1–12).Google Scholar
  21. 21.
    Bevitori, A. B., Silva, I. L. A., & Monteiro, S. N. (2010). Weibull analysis of the tensile strength variation with diameter for jute fibers. In Proceedings of Biomaterials Symposium, 1st TMS-ABM International Materials Congress, Rio de Janeiro, Brazil (pp. 1–10).Google Scholar
  22. 22.
    Costa, L. L., Loiola, R. L., & Monteiro, S. N. (2010). Tensile strength of bamboo fibers: Weibull analysis to characterize the diameter dependence. In Proceedings of Biomaterials Symposium, 1st TMS-ABM International Materials Congress, Rio de Janeiro, Brazil (pp. 1–10).Google Scholar
  23. 23.
    Santafe, H. P. G., Jr., Monteiro, S. N., & Costa, L. L. (2009). Weibull distribution as an instrument of statistical analysis for coir fiber tensile tests. In Proceedings of 64th International Congress of the Brazilian Association for Metallurgy and Materials, Belo Horizonte, Brazil (pp. 1–12) (in Portuguese).Google Scholar
  24. 24.
    Nascimento, D. C. O., Motta, L. C., & Monteiro, S. N. (2010). Weibull analysis of tensile tested piassava fibers with different diameters. In Proceedings of Characterization of Minerals, Metals and Materials SymposiumTMS Conference, Seattle, WA (pp. 1–8).Google Scholar
  25. 25.
    Portela, T. G. R., Costa, L. L., Lopes, F. P. D., & Monteiro, S. N. (2010). Characterization of fibers from different parts of the buriti palm tree. In Proceedings of Characterization of Minerals, Metals and Materials SymposiumTMS Conference, Seattle, WA (pp. 1–7).Google Scholar
  26. 26.
    IBGE. (2016). Systematic survey of agricultural production (Vol. 29, no. 7, p. 5). Rio de Janeiro, RJ: IBGE.Google Scholar
  27. 27.
    Jayavani, S., Deka, H., Varghese, T. O., & Nayak, S. K. (2015). Recent development and future trends in coir fiber reinforced green polymer composites: Review and evaluation. Polymer Composites.Google Scholar
  28. 28.
    Holbery, J., & Houston, D. (2006). Natural-fiber-reinforced polymer composites in automotive applications. JOM Journal of the Minerals Metals and Materials Society, 58(11), 80–86.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • Fernanda Santos da Luz
    • 1
  • Sergio Neves Monteiro
    • 1
    Email author
  1. 1.Department of Mechanical and Materials EngineeringMilitary Institute of EngineeringRio de JaneiroBrazil

Personalised recommendations