An Improved Silicon Carbide Monofilament for the Reinforcement of Metal Matrix Composites

  • Michael V. RixEmail author
  • Mark Baker
  • Mark J. Whiting
  • Ray P. Durman
  • Robert A. Shatwell
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)


As part of ongoing research in the UK, TISICS have developed an improved 140 µm carbon coated silicon carbide monofilament for the reinforcement of metal matrix composites. The monofilament is fabricated in a single reactor using a high speed chemical vapor deposition process at a rate of 8 m/min (26 ft/min). Statistical analysis of monofilament properties over two years of production has demonstrated excellent reproducibility of the process. The monofilaments have an average tensile strength of 4.0 ± 0.2 GPa with a Weibull modulus of 50 ± 10. Composites incorporating the monofilaments show similar low variability in yield and tensile strength with the latter exhibiting a mean value above 90% of the maximum theoretical strength predicted by the rule of mixtures. By varying the volume fraction and orientation of the monofilament reinforcement, composite properties can be tailored to fit design requirements. Examples are given of demonstrator components made for the European aerospace sector.


Silicon carbide Monofilament Fibre SiC monofilament 


  1. 1.
    Chollon, G., Naslain, R., Prentice, C., Shatwell, R., & May, P. (2005). High temperature properties of SiC and diamonc CVD-monofilaments. Journal of the European Ceramic Society, 25, 1929–1942.CrossRefGoogle Scholar
  2. 2.
    Zhang, R., Yang, Y., Shen, W., Wang, C., & Luo, X. (2010). Microstructure of SiC fiber fabricated by two-stage chemical vapor deposition on tungsten filament. Journal of Crystal Growth, 313, 56–61.CrossRefGoogle Scholar
  3. 3.
    Andreas, N. (2014). Fabrication of large diameter SiC monofilaments by polymer route. Journal of the European Ceramic Society, 34, 1487–1492.CrossRefGoogle Scholar
  4. 4.
    Cheng, T. T., Jones, I. P., Shatwell, R. A., & Doorbar, P. (1999). The microstructure of sigma 1140 + SiC fibres. Materials Science and Engineering A, 260, 139–145.CrossRefGoogle Scholar
  5. 5.
    Le Petitcorps, Y., Lahaye, M., Pailler, R., & Naslain, R. (1988). Modern boron an SiC CVD filaments: A comparative study. Composites Science and Technology, 32, 31–55.CrossRefGoogle Scholar
  6. 6.
    Ward-Close, C. M., Chandrasekaran, L., Robertson, J. G., Godfrey, S. P., & Murgatroyde, D. P. (1999). Advances in the fabrication of titanium metal matrix composite. Materials Science and Engineering A, 263, 314–318.CrossRefGoogle Scholar
  7. 7.
    Rawal, S. (2001). Metal-matrix composites for space applications. JOM Journal of the Minerals Metals and Materials Society, 53(4), 14–17.CrossRefGoogle Scholar
  8. 8.
    Hutson, A. L., & Kleek, J. J. (2009). Quick evaluation of materials and processes (Report AFRL-RX-WP-TR-2010-4175 approved for public release, Air Force Research Laboratory Materials and Manufacturing Directorate Wright-Patterson Air Force Base).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • Michael V. Rix
    • 1
    • 2
    Email author
  • Mark Baker
    • 1
  • Mark J. Whiting
    • 1
  • Ray P. Durman
    • 2
  • Robert A. Shatwell
    • 2
  1. 1.Department of Mechanical Engineering SciencesUniversity of SurreyGuildford, SurreyUK
  2. 2.TISICS Ltd.Farnborough, HampshireUK

Personalised recommendations