Advertisement

Advantages of Hot Compression in the Manufacture of Al-B4C Composites

  • Lucio VázquezEmail author
  • Dulce Y. Medina
  • Ángel D. Villarreal
  • David A. López
  • Gilberto Rangel
  • Elizabeth Garfias
  • Manuel Vite
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

The aim of this work was to prove that preparation of Al-B4C by hot compression at 350 °C (HC) followed by sintering at 550 °C would improve mechanical properties with respect to manufacturing by cold compression (CC) followed by sintering at the same temperature, the later experiments were carried out in a previous work. Samples with aluminum matrix adding 0, 3, 5 and 7% were prepared by powder metallurgy technique and tested. The mechanical properties were better using HC. Remarkably, resistance to compression was 3.5 times larger for HC. Vickers hardness, resistance to wearing and impact, as well as density were higher for HC. Scanning electron microscopy of CC specimens exhibit a cellular microstructure while HC ones display a smooth appearance. The better properties of the HC samples are explained due to an improved flow of material at higher temperatures of compression.

Keywords

Aluminum-boron carbide (Al-B4C) Composites Hot compression Cold compression Mechanical properties 

References

  1. 1.
    Sillekens, W. H., Jarvis, D. J., Vorozhtsov, A., Bojarevics, V., Badini, C.F., Pavese, M., et al. (2014). Metallurgical and Meterials Transactions A, 45A, 3349–3361.Google Scholar
  2. 2.
    Vazquez, L., Hernández, E., Altamirano, A., Cortés, V., Garfias, E., Refugio, E., et al. (2014). Proceedings of Advanced Composites for Aerospace, Marine, and Land Applications, TMS 2014, 143 Annual Meeting and Exhibition (pp. 23–33).Google Scholar
  3. 3.
    Dowson, G. Introduction to Powder Metallurgy the Process and Its Products. European Powder Metallurgy Association, Education and Training.Google Scholar
  4. 4.
    Mortensen, A., & Lorca, J. (2010). Annual Review of Materials Research, 40, 243–270.CrossRefGoogle Scholar
  5. 5.
    Smallman, R. E. (1980). Modern Physical Metallurgy, Butterworth (3rd ed., p. 411), UK.Google Scholar
  6. 6.
    Vorozhtsov, S., Kolarik, V., Promakhov, V., Zhukov, I., Vorozhtsov, A., & Kuchenreuther-Hummel, V. (2016, May). JOM, (68).Google Scholar
  7. 7.
    Callister, W.D. Jr., & Rethwish, D. G. (2014). Materials Science and Engineering, An Introduction (9th ed., p. 660).Google Scholar
  8. 8.
    Moghadam, A. D., Shultz, B. F., Ferguson, J. B., Omrani, E., Rohatgi, P. K., & Gupta, N. (2014). JOM Journal of the Minerals Metals and Materials Society, 66, 872–881.CrossRefGoogle Scholar
  9. 9.
    Christmas, T., Needleman, A., & Suresh, S. (1989). Acta Metallurgica, 37, 3029–3050.CrossRefGoogle Scholar
  10. 10.
    Jung, J., & Kang, S. (2004). Journal of the American Ceramic Society, 87(1), 47–57.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • Lucio Vázquez
    • 1
    Email author
  • Dulce Y. Medina
    • 1
  • Ángel D. Villarreal
    • 1
  • David A. López
    • 1
  • Gilberto Rangel
    • 1
  • Elizabeth Garfias
    • 1
  • Manuel Vite
    • 2
  1. 1.Departamento de MaterialesUniversidad Autónoma MetropolitanaTamaulipas, Mexico CityMexico
  2. 2.Sección de Posgrado e Investigación, ESIME, Instituto Politécnico NacionalUnidad Profesional Adolfo López MateosMexico CityMexico

Personalised recommendations