Effects of Dialium guineense Based Zinc Nanoparticle Material on the Inhibition of Microbes Inducing Microbiologically Influenced Corrosion

  • Joshua Olusegun OkeniyiEmail author
  • Gbadebo Samuel John
  • Taiwo Felicia Owoeye
  • Elizabeth Toyin Okeniyi
  • Deborah Kehinde Akinlabu
  • Olugbenga Samson Taiwo
  • Olufisayo Adebola Awotoye
  • Ojo Joseph Ige
  • Yemisi Dorcas Obafemi
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)


This paper investigates the effects of Dialium guineense based zinc nanoparticle material on the inhibition of microbes inducing microbiologically influenced corrosion (MIC) in metals. Extract of leaf from the natural plant were used as precursor for zinc nanoparticle material, which was characterized by scanning electron microscopy and energy dispersive spectroscopy (SEM + EDS) instrument. Sensitivity of the developed zinc bio-nanoparticle material from this on different strains of microbes that are known to induce microbiologically influenced corrosion, in metallic materials, was then studied and compared with that obtained from a commercial antibiotic employed as control. Results showed that the biomaterial capped nanoparticle exhibited inhibited growth of the studied different MIC inducing microbes. Zones of inhibition, the sensitivity measure of the biosynthesized material against the microbial strains either surpassed or compared well with the zones of inhibition from the commercial antibiotic (control). These results engender implication on the prospects of the zinc bio-nanoparticle usages in corrosion inhibition and protection system for metals in microbial corrosion influencing environment.


Biomaterial-based nanoparticle Dialium guineense leaf-extract Microbiologically-influenced-corrosion inducing microbes Microbial-growth inhibition Material characterisation 


  1. 1.
    Akpan, G. U., & Iliyasu, M. (2015). Fungal populations inhabiting biofilms of corroded oil pipelines in the Niger Delta region of Nigeria. Sky Journal of Microbiology Research, 3, 36–40.Google Scholar
  2. 2.
    Akpan, G. U., Abah, G., & Akpan, B. D. (2013). Correlation between microbial populations isolated from biofilms of oil pipelines and corrosion rates. The International Journal of Engineering and Science, 2, 39–45.Google Scholar
  3. 3.
    Babu, B. R., Maruthamuthu, S., Rajasekar, A., Muthukumar, N., & Palaniswamy, N. (2006). Microbiologically influenced corrosion in dairy effluent. International Journal of Environmental Science and Technology, 3, 159–166.CrossRefGoogle Scholar
  4. 4.
    Adesina, A. Y., Aliyu, I. K., & AI-Abbas, F. M. (2015). Microbiologically influenced corrosion (MIC) challenges in unconventional gas fields. In CORROSION 2015. Houston, TX: NACE International, Paper No. 5725.Google Scholar
  5. 5.
    NACE International. (2016). International measures of prevention, application, and economics of corrosion technologies (IMPACT) study. Houston, TX: NACE International.Google Scholar
  6. 6.
    Schmitt, G. (2009). Global needs for knowledge dissemination, research, and development in materials deterioration and corrosion control. World Corrosion Organization.Google Scholar
  7. 7.
    Lin, J., & Ballim, R. (2012). Biocorrosion control: Current strategies and promising alternatives. African Journal of Biotechnology, 11, 15736–15747.CrossRefGoogle Scholar
  8. 8.
    Videla, H. A., & Herrera, L. K. (2005). Microbiologically influenced corrosion: Looking to the future. International Microbiology, 8, 169–180.Google Scholar
  9. 9.
    Kanyanga, C. R., Munduku, K. C., Ehata, T. M., Lumpu, N. S., Maya, M. B., Manienga, K., et al. (2014). Antibacterial and antifungal screening of extracts from six medicinal plants collected in Kinshasa-Democratic Republic of Congo against clinical isolate pathogens. Journal of Pharmacognosy and Phytotherapy, 6, 24–32.CrossRefGoogle Scholar
  10. 10.
    Okere, O. S., Sangodele, J. O., Adams, M. D., Ogunwole, E., & Shafe, M. O. (2014). Antibacterial and antifungal activity of methanolic leaf extract of Allium sativum on selected pathogenic strains. International Journal of Tropical Disease & Health, 4, 1146–1152.CrossRefGoogle Scholar
  11. 11.
    Kavitha, K. S., & Satish, S. (2013). Evaluation of antimicrobial and antioxidant activities from Toona ciliata Roemer. Journal of Analytical Science and Technology, 4, 1–7. doi: 10.1186/2093-3371-4-23
  12. 12.
    Mahesh, B., & Satish, S. (2008). Antimicrobial activity of some important medicinal plant against plant and human pathogens. World Journal of Agricultural Sciences, 4, 839–843.Google Scholar
  13. 13.
    Okeniyi, J. O., Loto, C. A., & Popoola, A. P. I. (2016). Anticorrosion performance of Anthocleista djalonensis on steel-reinforced concrete in a sulphuric-acid medium. HKIE Transactions, 26, 138–149. doi: 10.1080/1023697X.2016.1201437.CrossRefGoogle Scholar
  14. 14.
    Okeniyi, J. O., Loto, C. A., & Popoola, A. P. I. (2016). Total-corrosion effects of Anthocleista djalonensis and Na2Cr2O7 on steel-rebar in H2SO4: Sustainable corrosion-protection prospects in microbial/industrial environment. In: R. E. Kirchain, B. Blanpain, C. Meskers, E. Olivetti, D. Apelian, J. Howarter, A. Kvithyld, B. Mishra, N. R. Neelameggham, & J. Spangenberger (Eds.), REWAS 2016: Towards materials resource sustainability (pp. 187–192). Cham, Switzerland: Springer. doi: 10.1007/978-3-319-48768-7_27
  15. 15.
    Okeniyi, J. O., Omotosho, O. A., Okeniyi, E. T., & Ogbiye, A. S. (2016). Anticorrosion performance of Solanum aethiopicum on steel-reinforcement in concrete immersed in industrial/microbial simulating-environment. In: TMS2016 Supplemental Proceedings (pp. 409–416). Cham, Switzerland: Springer. doi: 10.1007/978-3-319-48254-5_49
  16. 16.
    Okeniyi, J. O., Loto, C. A., & Popoola, A. P. I. (2015). Evaluation and analyses of Rhizophora mangle L. leaf-extract corrosion-mechanism on reinforcing steel in concrete immersed in industrial/microbial simulating-environment. Journal of Applied Sciences, 15, 1083–1092.CrossRefGoogle Scholar
  17. 17.
    Okeniyi, J. O., Loto, C. A., & Popoola, A. P. I. (2015). Inhibition of steel-rebar corrosion in industrial/microbial simulating-environment by Morinda lucida. Solid State Phenomena, 227, 281–285.CrossRefGoogle Scholar
  18. 18.
    Okeniyi, J. O., Loto, C. A., Popoola, A. P. I., Omotosho, O. A. (2015). Performance of Rhizophora mangle L. leaf-extract and sodium dichromate synergies on steel-reinforcement corrosion in 0.5 M H2SO4-immersed concrete. In: Corrosion 2015 Conference & Expo. Houston, TX: NACE International, Paper No. 5636.Google Scholar
  19. 19.
    Okeniyi, J. O., Omotosho, O. A., Ogunlana, O. O., Okeniyi, E. T., Owoeye, T. F., Ogbiye, A. S., et al. (2015). Investigating prospects of Phyllanthus muellerianus as eco-friendly/sustainable material for reducing concrete steel-reinforcement corrosion in industrial/microbial environment. Energy Procedia, 74, 1274–1281.CrossRefGoogle Scholar
  20. 20.
    Okeniyi, J. O., Loto, C. A., & Popoola, A. P. I. (2014). Corrosion inhibition performance of Rhizophora mangle L. bark-extract on concrete steel-reinforcement in industrial/microbial simulating-environment. International Journal of Electrochemical Science, 9, 4205–4216.Google Scholar
  21. 21.
    Okeniyi, J. O., Loto, C. A., & Popoola, A. P. I. (2014). Electrochemical performance of Phyllanthus muellerianus on the corrosion of concrete steel-reinforcement in industrial/microbial simulating-environment. Portugaliae Electrochimica Acta, 32, 199–211.CrossRefGoogle Scholar
  22. 22.
    Loto, C. A., & Popoola, A. P. I. (2011). Effect of tobacco and kola tree extracts on the corrosion inhibition of mild steel in acid chloride. International Journal of Electrochemical Science, 6, 3264–3276.Google Scholar
  23. 23.
    Logeswari, P., Silambarasan, S., & Abraham, J. (2015). Synthesis of silver nanoparticles using plants extract and analysis of their antimicrobial property. Journal of Saudi Chemical Society, 19, 311–317.CrossRefGoogle Scholar
  24. 24.
    Naik, K., & Kowshik, M. (2014). Anti-biofilm efficacy of low temperature processed AgCl–TiO2 nanocomposite coating. Materials Science and Engineering C, 34, 62–68.CrossRefGoogle Scholar
  25. 25.
    Zarasvand, K. A., & Rai, V. R. (2016). Inhibition of a sulfate reducing bacterium, Desulfovibrio marinisediminis GSR3, by biosynthesized copper oxide nanoparticles. 3 Biotech, 6, 1–7.Google Scholar
  26. 26.
    Olajubu, F. A., Akpan, I., Ojo, D. A., & Oluwalana, S. A. (2012). Antimicrobial potential of Dialium guineense (Wild.) stem bark on some clinical isolates in Nigeria. International Journal of Applied and Basic Medical Research, 2, 58.
  27. 27.
    Navale, G. R., Thripuranthaka, M., Late, D. J., & Shinde, S. S. (2015). Antimicrobial activity of ZnO nanoparticles against pathogenic bacteria and fungi. JSM Nanotechnology & Nanomedicine, 3, 2–9.Google Scholar
  28. 28.
    Reddy, L. S., Nisha, M. M., Joice, M., & Shilpa, P. N. (2014). Antimicrobial activity of zinc oxide (ZnO) nanoparticle against Klebsiella pneumoniae. Pharmaceutical Biology, 52, 1388–1397.CrossRefGoogle Scholar
  29. 29.
    Meruvu, H., Vangalapati, M., Chippada, S. C., & Bammidi, S. R. (2011). Synthesis and characterization of zinc oxide nanoparticles and its antimicrobial activity against Bacillus subtilis and Escherichia coli. Rasayan Journal of Chemistry, 4, 217–222.Google Scholar
  30. 30.
    Liu, Y., He, L., Mustapha, A., Li, H., Hu, Z. Q., & Lin, M. (2009). Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157: H7. Journal of Applied Microbiology, 107, 1193–1201.CrossRefGoogle Scholar
  31. 31.
    Salem, W., Leitner, D. R., Zingl, F. G., Schratter, G., Prassl, R., Goessler, W., et al. (2015). Antibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoxic Escherichia coli. International Journal of Medical Microbiology, 305, 85–95.CrossRefGoogle Scholar
  32. 32.
    Azizi, S., Ahmad, M. B., Namvar, F., & Mohamad, R. (2014). Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract. Materials Letters, 116, 275–277.CrossRefGoogle Scholar
  33. 33.
    Okeniyi, J. O., Loto, C. A., & Popoola, A. P. I. (2014). Electrochemical performance of Anthocleista djalonensis on steel-reinforcement corrosion in concrete immersed in saline/marine simulating-environment. Transactions of the Indian Institute of Metals, 67, 959–969.CrossRefGoogle Scholar
  34. 34.
    Okeniyi, J. O., Ogunlana, O. O., Ogunlana, O. E., Owoeye, T. F., & Okeniyi, E. T. (2015). Biochemical characterisation of the leaf of Morinda lucida: Prospects for environmentally-friendly steel-rebar corrosion-protection in aggressive medium. In: TMS2015 Supplemental Proceedings (pp. 635–644). Cham, Switzerland: Springer. doi: 10.1007/978-3-319-48127-2_78
  35. 35.
    Makarov, V. V., Love, A. J., Sinitsyna, O. V., Makarova, S. S., Yaminsky, I. V., Taliansky, M. E., et al. (2014). “Green” nanotechnologies: Synthesis of metal nanoparticles using plants. Acta Naturae, 6, 35–44.Google Scholar
  36. 36.
    Fuerbeth, W. (2015). New coatings for corrosion protection using nanoparticles or nanocapsules. In: CORROSION 2015. Houston, TX: NACE International, Paper No. 5554.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • Joshua Olusegun Okeniyi
    • 1
    Email author
  • Gbadebo Samuel John
    • 1
  • Taiwo Felicia Owoeye
    • 2
  • Elizabeth Toyin Okeniyi
    • 3
  • Deborah Kehinde Akinlabu
    • 4
  • Olugbenga Samson Taiwo
    • 5
  • Olufisayo Adebola Awotoye
    • 5
  • Ojo Joseph Ige
    • 5
  • Yemisi Dorcas Obafemi
    • 5
  1. 1.Mechanical Engineering DepartmentCovenant UniversityOtaNigeria
  2. 2.Department of ChemistryCovenant UniversityOtaNigeria
  3. 3.Petroleum Engineering DepartmentCovenant UniversityOtaNigeria
  4. 4.Biochemistry Programme, Department of Biological SciencesCovenant UniversityOtaNigeria
  5. 5.Applied Biology and Biotechnology Unit, Department of Biological SciencesCovenant UniversityOtaNigeria

Personalised recommendations