Advertisement

Porous Asphalt Mixtures with 100% Siderurgic Aggregates

  • Marta SkafEmail author
  • Vanesa Ortega-López
  • Ángel Aragón
  • José T. San-José
  • Javier J. González
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

In this research, the possibility of making a porous asphalt mixture manufactured completely with recycled aggregates from carbon steel production was explored. Electric arc furnace slag (EAFS) was used as coarse aggregate and ladle furnace slag (LFS) as fine aggregate and filler. Initially, the properties of both slags and their suitability to be used in the manufacture of porous mixtures were analyzed. Then, a series of asphalt mixtures were developed incorporating these slags and they were compared with a reference mixture, made with conventional components. A series of tests were performed, including concepts such as mechanical behavior, durability, moisture susceptibility, rutting resistance, permeability or skid resistance. The results show that it is possible to make a suitable porous asphalt mixture with 100% of steel slag aggregates, complying with the standard requirements and obtaining a durable and environmentally sustainable mixture.

Keywords

Steelmaking slag Ladle furnace slag Electric arc furnace slag Porous asphalt Waste management 

Notes

Acknowledgements

Our gratitude to the Spanish Ministry of Economy and Competitiveness (MINECO) and FEDER Funds for their financial support through Project BlueCons: BIA2014-55576-C2-1-R.

References

  1. 1.
    EUROSLAG. (2013). The European slag association. Position Paper on the Status of Ferrous Slag.Google Scholar
  2. 2.
    CEDEX. (2015). Catálogo de Residuos utilizables en Construcción. Available from: http://www.cedexmateriales.vsf.es/view/catalogo.aspx
  3. 3.
    Motz, H., & Geiseler, J. (2001). Products of steel slags an opportunity to save natural resources. Waste Management, 21(3), 285–293.CrossRefGoogle Scholar
  4. 4.
    Rohde, L., Núñez, W. P., & Ceratti, J. A. P. (2003). Electric arc furnace steel slag: Base material for low-volume roads (pp. 201–207). Reno, NV.Google Scholar
  5. 5.
    Behiry, A. E. A. E. M. (2013). Evaluation of steel slag and crushed limestone mixtures as subbase material in flexible pavement. Ain Shams Engineering Journal, 4(1), 43–53.Google Scholar
  6. 6.
    FHWA. (1997). User guidelines for waste and byproduct materials in pavement construction. US: Federal Highway Administration.Google Scholar
  7. 7.
    Jones, N. C. (2001). The successful use of EAF slag in Asphalt. In Proceedings of 2nd European Slag Conference. 2001. Düsselforf: EUROSLAG Eds. Publication nº1. ISSN 1617–5867.Google Scholar
  8. 8.
    Emery, J. J. (1984). Steel slag utilization in asphalt mixes. In Canadian Technical Asphalt Association Proceedings.Google Scholar
  9. 9.
    Ali, N. A., Chan, J. S. S., Papagiannakis, T., Theriault, E. G., & Bergan, A. T. (1992). Use of steel slag in asphaltic concrete. San Diego, CA, USA: Publ by ASTM.CrossRefGoogle Scholar
  10. 10.
    Manso, J. M., Gonzalez, J. J., & Polanco, J. A. (2004). Electric arc furnace slag in concrete. Journal of Materials in Civil Engineering, 16(6), 639–645.CrossRefGoogle Scholar
  11. 11.
    Papayianni, I., & Anastasiou, E. (2011). Concrete incorporating high calcium fly ash and EAF slag aggregates. Magazine of Concrete Research, 63(8), 597–604.CrossRefGoogle Scholar
  12. 12.
    Pellegrino, C., & Gaddo, V. (2009). Mechanical and durability characteristics of concrete containing EAF slag as aggregate. Cement & Concrete Composites, 31(9), 663–671.CrossRefGoogle Scholar
  13. 13.
    Faleschini, F., Alejandro Fernández-Ruíz, M., Zanini, M. A., Brunelli, K., Pellegrino, C., & Hernández-Montes, E. (2015). High performance concrete with electric arc furnace slag as aggregate: Mechanical and durability properties. Construction and Building Materials, 101, 113–121.Google Scholar
  14. 14.
    Memoli, F., Mapelli, C., & Guzzon, M. (2007). Recycling of ladle slag in the EAF: A way to improve environmental conditions and reduce variable costs in steel plants. Iron and Steel Technology, 4(2), 68–76.Google Scholar
  15. 15.
    Adolfsson, D., Engström, F., Robinson, R., & Björkman, B. (2011). Cementitious phases in ladle slag. Steel Research International, 82(4), 398–403.CrossRefGoogle Scholar
  16. 16.
    Shi, C. (2002). Characteristics and cementitious properties of ladle slag fines from steel production. Cement and Concrete Research, 32(3), 459–462.CrossRefGoogle Scholar
  17. 17.
    Richardson, I. G., & Cabrera, J. G. (2000). The nature of C-S-H in model slag cements. Cement & Concrete Composites, 22(4), 259–266.CrossRefGoogle Scholar
  18. 18.
    Akin Altun, I., & Yilmaz, I. (2002). Study on steel furnace slags with high MgO as additive in Portland cement. Cement and Concrete Research, 32(8), 1247–1249.CrossRefGoogle Scholar
  19. 19.
    Alvarez, A. E., Martin, A. E., & Estakhri, C. (2011). A review of mix design and evaluation research for permeable friction course mixtures. Construction and Building Materials, 25(3), 1159–1166.CrossRefGoogle Scholar
  20. 20.
    Ongel, A., Kohler, E., & Harvey, J. (2008). Principal components regression of onboard sound intensity levels. Journal of Transportation Engineering, 134(11), 459–466.CrossRefGoogle Scholar
  21. 21.
    Kowalski, K. J., McDaniel, R. S., Shah, A., & Olek, J. (2009). Long-term monitoring of noise and frictional properties of three pavements: Dense-graded asphalt, stone matrix asphalt, and porous friction course. Transportation Research Record, 12–19.Google Scholar
  22. 22.
    EN Euronorm. European Committee for Standardization: Rue de Stassart, 36. Belgium–1050 Brussels.Google Scholar
  23. 23.
    PG-3 Pliego de Prescripciones Técnicas Generales para Obras de Carreteras y Puentes, PG-3 (General Technical Specifications in Road Construction) Spanish Ministry of Public Works: Madrid.Google Scholar
  24. 24.
    Alvarez, A., Martin, A., & Estakhri, C. (2011). Optimizing the design of permeable friction course mixtures. Transportation Research Record: Journal of the Transportation Research Board, 2209, 26–33.CrossRefGoogle Scholar
  25. 25.
    Alvarez, A. E., Martin, A. E., & Estakhri, C. (2010). Drainability of permeable friction course mixtures. Journal of Materials in Civil Engineering, 22(6), 556–564.CrossRefGoogle Scholar
  26. 26.
    Mansour, T. N., & Putman, B. J. (2013). Influence of aggregate gradation on the performance properties of porous asphalt mixtures. Journal of Materials in Civil Engineering, 25(2), 281–288.CrossRefGoogle Scholar
  27. 27.
    ASTM D 7064. (2004). Standard practice for open graded friction course (OGFC) mix design. American Society for Testing and Materials (ASTM). Annual Book of ASTM Standards: West Conshohocken, P.A.Google Scholar
  28. 28.
    Ahmedzade, P., & Sengoz, B. (2009). Evaluation of steel slag coarse aggregate in hot mix asphalt concrete. Journal of Hazardous Materials, 165(1–3), 300–305.CrossRefGoogle Scholar
  29. 29.
    Kanitpong, K., & Pummarin, K. (2010). Investigation of industrial wastes in hot mix asphalt for moisture damage resistance. Journal of Solid Waste Technology and Management, 36(2), 81–90.CrossRefGoogle Scholar
  30. 30.
    Li, S., Zhu, K., & Noureldin, S. (2007). Evaluation of friction performance of coarse aggregates and hot-mix asphalt pavements. Journal of Testing and Evaluation, 35(6), 571–577.Google Scholar
  31. 31.
    Hainin, M. R., Rusbintardjo, G., Hameed, M. A. S., Hassan, N. A., & Yusoff, N. I. M. (2014). Utilisation of steel slag as an aggregate replacement in porous asphalt mixtures. Jurnal Teknologi (Sciences and Engineering), 69(1), 67–73.Google Scholar
  32. 32.
    Wang, Y., & Wang, G. (2011). Improvement of porous pavement, in Final Report to US Green Building Council. Greenville, NC: East Carolina University.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • Marta Skaf
    • 1
    Email author
  • Vanesa Ortega-López
    • 2
  • Ángel Aragón
    • 2
  • José T. San-José
    • 3
  • Javier J. González
    • 3
  1. 1.Department of Construction, EPSUniversity of BurgosBurgosSpain
  2. 2.Department of Civil Engineering, EPSUniversity of BurgosBurgosSpain
  3. 3.Department of Engineering of MaterialsUPV/EHULeioaSpain

Personalised recommendations