Fiber Reinforced Concrete Manufactured with Electric Arc Furnace Slag

  • Vanesa Ortega-LópezEmail author
  • José A. Fuente-Alonso
  • Amaia Santamaría
  • Marta Skaf
  • Juan M. Manso
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)


The use of electric arc furnace slag (EAFS), a by-product of the steelmaking industry, as an aggregate in concrete has been demonstrated to be a good practice in its manufacture. Furthermore, the incorporation of fibers in concrete provides a more ductile behavior, increasing their tenacity and load capacity, improving the flexotraction strength and controlling shrinkage cracking. The purpose of this research was to study the performance improvement by reinforcing steel-slag concrete with metallic or synthetic fibers added in different amounts. Some of the properties evaluated were: consistency of freshly mixed concrete by Abrams cone, compressive strength, flexotraction strength and indirect tensile strength. The results show a substantial improvement of the performance of the steel-slag concrete when it is reinforced with fibers. It also fulfils the requirements of “depth of water penetration under pressure” test, even in the worst environmental exposure case.


Electric arc furnace slag Reinforced concrete Fibers 



We express our gratitude to the Spanish Ministry (MINECO) BIA2014-55576-C2-1-R for financing this research work.


  1. 1.
    Steel Statistical Yearbook. (2014). World Steel Association.Google Scholar
  2. 2.
    Luxán, M. P., et al. (2000). Characteristics of the slags produced in the fusion of scrap steel by EAF. Cement and Concrete Research, 30(4), 517–519.CrossRefGoogle Scholar
  3. 3.
    Frías Rojas, M., Sánchez, M. I., & Uria, A. (2002). Study of the instability of black slags from EAF steel industry. Materiales de Construcción, 52(267), 79–83.Google Scholar
  4. 4.
    Setién, J., Hernández, D., & González, J. J. (2009). Characterization of ladle furnace basic slag for use as a construction material. Construction and Building Materials, 23(5), 1788–1794.CrossRefGoogle Scholar
  5. 5.
    Shi, C. (2002). Characteristics and cementitious properties of ladle slag fines from steel production. Cement and Concrete Research, 32(3), 459–462.CrossRefGoogle Scholar
  6. 6.
    Arribas, I., et al. (2010). Application of steel slag concrete in the foundation slab and basement wall of the Tecnalia kubik building. In: 6th European Slag Conference Proceedings. Madrid, Euroslag.Google Scholar
  7. 7.
    Geiseler, J., & Scholosser, R. (1988). Investigation concerning the structure and properties of steel slags. In: Proceedings of the 3rd International Conference on Molten Slags and Fluxes. Glasgow, Scotland.Google Scholar
  8. 8.
    Mroueh, U. M., Eskola, P., & Laine-Ylijoki, J. (2001). Life-cycle impacts of the use of industrial by-products in road and earth construction. Waste Management, 21(3), 271–277.CrossRefGoogle Scholar
  9. 9.
    Manso, J. M., et al. (2005). Ladle furnace slag in construction. The Journal of Materials in Civil Engineering, 17, 513–518.CrossRefGoogle Scholar
  10. 10.
    Bosela, P., et al. (2009). Fresh and hardened properties of paving concrete with steel slag aggregate. Propiedades para firmes del hormigón fabricado con áridos siderúrgicos. Carreteras: Revista técnica de la Asociación Española de la Carretera, 4(166), 55–66.Google Scholar
  11. 11.
    Abu-Eishah, S. I., El-Dieb, A. S., & Bedir, M. S. (2012). Performance of concrete mixtures made with electric arc furnace (EAF) steel slag aggregate produced in the Arabian Gulf region. Construction and Building Materials, 34, 249–256.CrossRefGoogle Scholar
  12. 12.
    Kim, S. W., Lee, Y. J., & Kim, K. H. (2012). Bond behavior of RC beams with electric arc furnace oxidizing slag aggregates. Journal of Asian Architecture and Building Engineering, 11(2), 359–366.CrossRefGoogle Scholar
  13. 13.
    Mäkelä, M., et al. (2012). Influence of fly ash and ground granulated blast furnace slag on the mechanical properties and reduction behavior of cold-agglomerated blast furnace briquettes. ISIJ International, 52(6), 1101–1108.CrossRefGoogle Scholar
  14. 14.
    Nadeem, M., & Pofale, A. (2012). Utilization of industrial waste slag as aggregate in concrete applications by adopting Taguchi’s approach for optimizatio. The Open Civil Engineering, 2, 96–105.CrossRefGoogle Scholar
  15. 15.
    Manso, J. M., et al. (2013). The use of ladle furnace slag in soil stabilization. Construction and Building Materials, 40, 126–134.CrossRefGoogle Scholar
  16. 16.
    Pellegrino, C., & Faleschini, F. (2013). Experimental behavior of reinforced concrete beams with electric arc furnace slag as recycled aggregate. ACI Materials Journal, 110(2), 197–205.Google Scholar
  17. 17.
    Wang, Q., Yang, J., & Yan, P. (2013). Cementitious properties of super-fine steel slag. Powder Technology, 245, 35–39.CrossRefGoogle Scholar
  18. 18.
    Pellegrino, C., & Gaddo, V. (2009). Mechanical and durability characteristics of concrete containing EAF slag as aggregate. Cement & Concrete Composites, 31(9), 663–671.CrossRefGoogle Scholar
  19. 19.
    EN Euronorm. European Committee for Standardization. Brussels.Google Scholar
  20. 20.
    CEN. European Committee for Standardization. Brussels.Google Scholar
  21. 21.
    Turmo, J., et al. (2008). Study of the shear behaviour of fiber reinforced concrete beams. Materiales de Construcción, 58(292), 5–13.CrossRefGoogle Scholar
  22. 22.
    Manso, J. M., et al. (2011). Design and elaboration of concrete mixtures using steelmaking slags. ACI Materials Journal, 108(6), 673–681.Google Scholar
  23. 23.
    Yazici, S., Inan, G., & Tabak, V. (2007). Effect of aspect ratio and volume fraction of steel fiber on the mechanical properties of SFRC. Construction and Building Materials, 21(6), 1250–1253.CrossRefGoogle Scholar
  24. 24.
    Manso, J. M., Gonzalez, J. J., & Polanco, J. A. (2004). Electric arc furnace slag in concrete. Journal of Materials in Civil Engineering, 16(6), 639–645.CrossRefGoogle Scholar
  25. 25.
    Bemal, S., et al. (2009). Mechanical behaviour of steel fibre-reinforced alkali activated slag concrete. Materiales de Construccion, 59(293), 53–62.Google Scholar
  26. 26.
    Fomento, M. (Ed.). (2008). Instrucción para realización de obras de hormigón estructural. Madrid: Comisión Permanente de Hormigón.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • Vanesa Ortega-López
    • 1
    Email author
  • José A. Fuente-Alonso
    • 1
  • Amaia Santamaría
    • 2
  • Marta Skaf
    • 1
  • Juan M. Manso
    • 1
  1. 1.University of Burgos (EPS)BurgosSpain
  2. 2.Department of Mining and Metallurgical EngineeringUPV/EHUBilbaoSpain

Personalised recommendations