Skip to main content

Chemical Composition Effect of Sol-Gel Derived Bioactive Glass Over Bioactivity Behavior

  • Conference paper
  • First Online:
Proceedings of the 3rd Pan American Materials Congress

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

Bioactive glasses (BG) are a group of inorganic materials widely used in Bone Tissue Engineering (BTE). These biomaterials react with body fluids resulting in the formation of bone like apatite layer. In this study, sol-gel derived bioactive glass was synthesized in the SiO2-CaO-P2O5 system according to augmented constrained mixture experimental design, with percentage restrictions for each oxide as follows: 58 ≤ SiO2 ≤ 70; 6 ≤ P2O5 ≤ 9 and 24 ≤ CaO ≤ 34. BG were conformed into short-bulk cylinders and immersed in Simulated Body Fluid (SBF) solution for 7 and 14 days in order to carry out bioactivity tests. Apatite layer formation was confirmed by Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Analysis (EDX). The results showed apatite layer formation depended on BG chemical composition proved with p-values from ANOVA analysis below 0.05 indicating factors significance over the response. The formed apatite layer presented a Ca/P ratio similar to bone apatite, this result is appropriate for biomaterials used in BTE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Peter, M., Binulal, N. S., Nair, S. V., Selvamurugan, N., Tamura, H., & Jayakumar, R. (2010). Novel biodegradable chitosan–gelatin/nano-bioactive glass ceramic composite scaffolds for alveolar bone tissue engineering. Chemical Engineering Journal, 158(2), 353–361. doi:10.1016/j.cej.2010.02.003

    Article  Google Scholar 

  2. Catauro, M., Bollino, F., Renella, R. A., & Papale, F. (2015). Sol-gel synthesis of SiO2-CaO-P2O5 glasses: Influence of the heat treatment on their bioactivity and biocompatibility. Ceramic International, 41(10), 12578–12588. doi:10.1016/j.ceramint.2015.06.075

    Article  Google Scholar 

  3. Jones, J. R. (2013). Review of bioactive glass: From Hench to hybrids. Acta Biomaterialia, 9(1), 4457–4486. doi:10.1016/j.actbio.2012.08.023

    Article  Google Scholar 

  4. Dziadek, M., Zagrajczuk, B., Menaszek, E., Wegrzynowicz, A., Pawlik, J., & Cholewa-Kowalska, K. (2016). Gel-derived SiO2–CaO–P2O5 bioactive glasses and glass-ceramics modified by SrO addition. Ceramic International, 42(5), 5842–5857. doi:10.1016/j.ceramint.2015.12.128

    Article  Google Scholar 

  5. Hench, L. L. (2006). The story of bioglass. Journal of Materials Science: Materials in Medicine, 17(11), 967–978. doi:10.1007/s10856-006-0432-z

    Google Scholar 

  6. Faure, J., Drevet, R., Lemelle, A., Ben Jaber, N., Tara, A., El Btaouri, H., et al. (2015). A new sol-gel synthesis of 45S5 bioactive glass using an organic acid as catalyst. Materials Science and Engineering C, 47, 407–412. doi:10.1016/j.msec.2014.11.045

    Article  Google Scholar 

  7. Siqueira, R. L., & Zanotto, E. D. (2013). The influence of phosphorus precursors on the synthesis and bioactivity of SiO2-CaO-P2O5 sol-gel glasses and glass-ceramics. Journal of Materials Science: Materials in Medicine, 24(2), 365–379. doi:10.1007/s10856-012-4797-x

    Google Scholar 

  8. Cornell, J. A. (2002). Experiments with mixtures: Designs, models, and the analysis of mixture data (3rd ed.). Hoboken, NJ, USA: Wiley.

    Book  Google Scholar 

  9. Kokubo, T., & Takadama, H. (2006). How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 27(15), 2907–2915. doi:10.1016/j.biomaterials.2006.01.017

    Article  Google Scholar 

  10. Vaid, C., & Murugavel, S. (2013). Alkali oxide containing mesoporous bioactive glasses: Synthesis, characterization and in vitro bioactivity. Materials Science and Engineering C, 33(2), 959–968. doi:10.1016/j.msec.2012.11.028

    Article  Google Scholar 

  11. Desogus, L., Cuccu, A., Montinaro, S., Orrù, R., Cao, G., Bellucci, D., et al. (2015). Classical Bioglass® and innovative CaO-rich bioglass powders processed by Spark Plasma Sintering: A comparative study. Journal of the European Ceramic Society, 35(15), 4277–4285. doi:10.1016/j.jeurceramsoc.2015.07.023

    Article  Google Scholar 

  12. Saltzman, W. M. (2009). Biomechanics. In Biomedical engineering. Bridging medicine and technology (p. 656). Cambridge University Press.

    Google Scholar 

  13. Wu, S., Liu, X., Yeung, K. W. K., Liu, C., & Yang, X. (2014). Biomimetic porous scaffolds for bone tissue engineering. Materials Science and Engineering R: Reports, 80(1), 1–36. doi:10.1016/j.mser.2014.04.001

    Article  Google Scholar 

  14. Hench, L. L., Splinter, R. J., Allen, W. C., & Greenlee, T. K. (1971). Bonding mechanisms at the interface of ceramic prosthetic materials. Journal of Biomedical Materials Research, 5(6), 117–141. doi:10.1002/jbm.820050611

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful with Biomaterials Research Group for providing the necessary reagents and studies during the development of this project.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Quintero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Minerals, Metals & Materials Society

About this paper

Cite this paper

Quintero, L.A., Escobar, D.M. (2017). Chemical Composition Effect of Sol-Gel Derived Bioactive Glass Over Bioactivity Behavior. In: Meyers, M., et al. Proceedings of the 3rd Pan American Materials Congress. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-52132-9_2

Download citation

Publish with us

Policies and ethics