Effect of C5H11NO2S on Reinforcing-Steel Corrosion in Concrete Immersed in Industrial/Microbial Simulating-Environment

  • Joshua Olusegun OkeniyiEmail author
  • Abiodun Oyekola Abioye
  • Zechariah Chiwonsoko Adikpewun
  • Adeola Abigail Otesanya
  • Michael Damilola Eleshin
  • Olanrewaju Oyewale Gabriel
  • Oluyori Adeoye
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)


In this paper, C5H11NO2S (Methionine) effect on reinforcing-steel corrosion in concrete immersed in 0.5 M H2SO4, simulating industrial/microbial environment, was studied by electrochemical techniques of open circuit potential and corrosion rate. The corrosion test-data were subjected to statistical distribution and tests of significance analyses prescribed by ASTM G16-95 R04. From this, analyzed results showed that the corrosion rate test-data followed the Weibull more than the Normal while the corrosion potential test-data followed both distributions. In spite of these, both the corrosion potential and the corrosion rate models still find agreements in corrosion criteria classification for the tested samples. Samples with C5H11NO2S admixture exhibited corrosion rate reductions compared to the control samples. By this, 0.25% C5H11NO2S admixture (i.e. wt% cement) exhibited optimal inhibition efficiency, η = 87.95 ± 7.64%, on steel-rebar corrosion in the 0.5 M H2SO4-immersed concrete. Experimental data fitted Flory-Huggins adsorption isotherm that indicated physisorption as the prevailing mechanism of C5H11NO2S corrosion-protection on the reinforcing-steel in the industrial/microbial simulating-environment.


Methionine admixture Steel-rebar corrosion Industrial/microbial simulating-environment Statistical tests of significance Corrosion inhibition efficiency 


  1. 1.
    Okeniyi, J. O., Omotosho, O. A., Popoola, A. P. I., & Loto, C. A. (2016). Phyllanthus muellerianus and C6H15NO3 synergistic effects on 0.5 M H2SO4-immersed steel-reinforced concrete: implication for clean corrosion-protection of wind energy structures in industrial environment. In: AIP Conference Proceedings (Vol. 1758, No. 030031, pp. 1–8). AIP Publishing. doi: 10.1063/1.4959427.
  2. 2.
    Ismail, M., Raja, P. B., & Salawu, A. A. (2015). Developing deeper understanding of green inhibitors for corrosion of reinforcing steel in concrete. In: H. L. Lim (Ed.), Handbook of research on recent developments in materials science and corrosion engineering education (pp. 118–146). Hershey, PA: IGI Global.Google Scholar
  3. 3.
    Fei, F. L., Hu, J., Wei, J. X., Yu, Q. J., Chen, Z. S. (2014). Corrosion performance of steel reinforcement in simulated concrete pore solutions in the presence of imidazoline quaternary ammonium salt corrosion inhibitor. Construction and Building Materials, 70, 43–53.Google Scholar
  4. 4.
    Okeniyi, J. O., Ambrose, I. J., Oladele, I. O., Loto, C. A., & Popoola, A. P. I. (2013). Electrochemical performance of sodium dichromate partial replacement models by triethanolamine admixtures on steel-rebar corrosion in concretes. International Journal of Electrochemical Science, 8, 10758–10771.Google Scholar
  5. 5.
    Mesquita, T. J., Chauveau, E., Mantel, M., Kinsman, N., Roche, V., & Nogueira, R. P. (2012). Lean duplex stainless steels—The role of molybdenum in pitting corrosion of concrete reinforcement studied with industrial and laboratory castings. Materials Chemistry and Physics, 132, 967–972.CrossRefGoogle Scholar
  6. 6.
    Okeniyi, J. O., Popoola, A. P. I., Loto, C. A., Omotosho, O. A., Okpala, S. O., & Ambrose, I. J. (2015). Effect of NaNO2 and C6H15NO3 synergistic admixtures on steel-rebar corrosion in concrete immersed in aggressive environments. Advances in Materials Science and Engineering, 2015, 11 p. doi: 10.1155/2015/540395.
  7. 7.
    Okeniyi, J. O., Oladele, I. O., Omoniyi, O. M., Loto, C. A., & Popoola, A. P. I. (2015). Inhibition and compressive-strength performance of Na2Cr2O7 and C10H14N2Na2O8·2H2O in steel-reinforced concrete in corrosive environments. Canadian Journal of Civil Engineering, 42, 408–416.CrossRefGoogle Scholar
  8. 8.
    Tang, Y., Zhang, G., & Zuo, Y. (2012). The inhibition effects of several inhibitors on rebar in acidified concrete pore solution. Construction and Building Materials, 28, 327–332.CrossRefGoogle Scholar
  9. 9.
    Okeniyi, J. O., Oladele, I. O., Ambrose, I. J., Okpala, S. O., Omoniyi, O. M., Loto, C. A., et al. (2013). Analysis of inhibition of concrete steel-rebar corrosion by Na2Cr2O7 concentrations: Implications for conflicting reports on inhibitor effectiveness. Journal of Central South University, 20, 3697–3714.CrossRefGoogle Scholar
  10. 10.
    Okeniyi, J. O., Omoniyi, O. M., Okpala, S. O., Loto, C. A., & Popoola, A. P. I. (2013). Effect of ethylenediaminetetraacetic disodium dihydrate and sodium nitrite admixtures on steel-rebar corrosion in concrete. European Journal of Environmental and Civil Engineering, 17, 398–416.CrossRefGoogle Scholar
  11. 11.
    Okeniyi, J. O., Ambrose, I. J., Okpala, S. O., Omoniyi, O. M., Oladele, I. O., Loto, C. A., et al. (2014). Probability density fittings of corrosion test-data: Implications on C6H15NO3 effectiveness on concrete steel-rebar corrosion. Sadhana, 39, 731–764.CrossRefGoogle Scholar
  12. 12.
    ASTM G16-95 R04. (2005). Standard guide for applying statistics to analysis of corrosion data. West Conshohocken PA: ASTM International.Google Scholar
  13. 13.
    Roberge, P. R. (2003). Statistical interpretation of corrosion test results. In: S. D. Cramer & B. S. Covino Jr. (Eds.), ASM Handbook: Vol 13A. Corrosion: Fundamentals, testing, and protection (pp. 425–429). Materials Park, OH: ASM International.Google Scholar
  14. 14.
    Okeniyi, J. O., Loto, C. A., & Popoola, A. P. I. (2016). Anticorrosion performance of Anthocleista djalonensis on steel-reinforced concrete in a sulphuric-acid medium. HKIE Transactions, 23, 138–149.CrossRefGoogle Scholar
  15. 15.
    Jamil, H. E., Shriri, A., Boulif, R., Bastos, C., Montemor, M. F., & Ferreira, M. G. S. (2004). Electrochemical behaviour of amino alcohol-based inhibitors used to control corrosion of reinforcing steel. Electrochimica Acta, 49, 2753–2760.CrossRefGoogle Scholar
  16. 16.
    Aouniti, A., Khaled, K. F., & Hammouti, B. (2013). Correlation between inhibition efficiency and chemical structure of some amino acids on the corrosion of Armco Iron in molar HCl. International Journal of Electrochemical Science, 8, 5295–5943.Google Scholar
  17. 17.
    Raphael, V. P., Kakkassery, J. T., Shanmughan, S. K., & Paul, A. (2013). Study of synergistic effect of iodide on the corrosion antagonistic behaviour of a heterocyclic phenylhydrazone in sulphuric acid medium on carbon steel. ISRN Corrosion, 2013, 1–7.CrossRefGoogle Scholar
  18. 18.
    Morad, M. S. (2008). Corrosion inhibition of mild steel in sulfamic acid solution by S-containing amino acids. Journal of Applied Electrochemistry, 38, 1509–1518.CrossRefGoogle Scholar
  19. 19.
    Oguzie, E. E., Li, Y., Wang, S. G., & Wang, F. (2011). Understanding corrosion inhibition mechanisms—experimental and theoretical approach. RSC Advances, 1, 866–873.CrossRefGoogle Scholar
  20. 20.
    Okeniyi, J. O., Loto, C. A., Popoola, & A. P. I. (2015). Inhibition of steel-rebar corrosion in industrial/microbial simulating-environment by Morinda lucida. Solid State Phenomena, 227, 281–285.Google Scholar
  21. 21.
    Gerengi, H., Kocak, Y., Jazdzewska, A., Kurtay, M., & Durgun, H. (2013). Electrochemical investigations on the corrosion behaviour of reinforcing steel in diatomite- and zeolite-containing concrete exposed to sulphuric acid. Construction and Building Materials, 49, 471–477.CrossRefGoogle Scholar
  22. 22.
    ASTM G109-99a. (2005). Standard test method for determining the effects of chemical admixtures on the corrosion of embedded steel reinforcement in concrete exposed to chloride environments. West Conshohocken, PA: ASTM International.Google Scholar
  23. 23.
    ASTM C192/192M-02. (2005). Standard practice for making and curing concrete test specimens in the laboratory. West Conshohocken, PA: ASTM International.Google Scholar
  24. 24.
    Okeniyi, J. O., Loto, C. A., & Popoola, A. P. I. (2014). Rhizophora mangle L. effects on steel-reinforced concrete in 0.5 M H2SO4: Implications for corrosion-degradation of wind-energy structures in industrial environments. Energy Procedia, 50, 429–436.CrossRefGoogle Scholar
  25. 25.
    Corbett, R. A. (2005). Immersion testing. In: R. Baboian (Ed.), Corrosion tests and standards: Application and interpretation (2nd ed., pp. 139–146). West Conshohocken, PA: ASTM International.Google Scholar
  26. 26.
    Ormellese, M., Lazzari, L., Goidanich, S., Fumagalli, G., & Brenna, A. (2009). A study of organic substances as inhibitors for chloride-induced corrosion in concrete. Corrosion Science, 51, 2959–2968.CrossRefGoogle Scholar
  27. 27.
    Okeniyi, J. O., Loto, C. A., & Popoola, A. P. I. (2015). Evaluation and analyses of Rhizophora mangle L. leaf-extract corrosion-mechanism on reinforcing steel in concrete immersed in industrial/microbial simulating-environment. Journal of Applied Sciences, 15, 1083–1092.CrossRefGoogle Scholar
  28. 28.
    Okeniyi, J. O., Omotosho, O. A., Loto, C. A., & Popoola, A. P. I. (2015). Corrosion rate and noise resistance correlation from NaNO2-admixed steel-reinforced concrete. Asian Journal of Scientific Research, 8, 454–465.CrossRefGoogle Scholar
  29. 29.
    Omotosho, O. A., Okeniyi, J. O., Ajayi, O. O., & Loto, C. A. (2012). Effect of synergies of K2Cr2O7, K2CrO4, NaNO2 and aniline inhibitors on the corrosion potential response of steel reinforced concrete in saline medium. International Journal of Environmental Sciences, 2, 2346–2359.Google Scholar
  30. 30.
    ASTM C876–91 R99. (2005). Standard test method for half-cell potentials of uncoated reinforcing steel in concrete. West Conshohocken, PA: ASTM International.Google Scholar
  31. 31.
    Okeniyi, J. O., Loto, C. A., & Popoola, A. P. I. (2014). Electrochemical performance of Anthocleista djalonensis on steel-reinforcement corrosion in concrete immersed in saline/marine simulating-environment. Transactions of the Indian Institute of Metals, 67, 959–969.CrossRefGoogle Scholar
  32. 32.
    Sastri, V. S. (2011). Green corrosion inhibitors: Theory and practice. New York: Wiley.CrossRefGoogle Scholar
  33. 33.
    Okeniyi, J. O., Okeniyi, E. T., & Atayero, A. A. (2015). Programming development of Kolmogorov-Smirnov goodness-of-fit testing of data normality as a Microsoft Excel® library function. Journal of Software & Systems Development, 2015, 1–15.Google Scholar
  34. 34.
    Frey, J. (2012). An exact Kolmogorov-Smirnov test for the Poisson distribution with unknown mean. Journal of Statistical Computation and Simulation, 82, 1023–1033.CrossRefGoogle Scholar
  35. 35.
    Okeniyi, J. O., & Okeniyi, E. T. (2012). Implementation of Kolmogorov-Smirnov P-value computation in Visual Basic®: Implication for Microsoft Excel® library function. Journal of Statistical Computation and Simulation, 82, 1727–1741.CrossRefGoogle Scholar
  36. 36.
    Okeniyi, J. O., Moses, I. F., & Okeniyi, E. T. (2015). Wind characteristics and energy potential assessment in Akure, South West Nigeria: Econometrics and policy implications. International Journal of Ambient Energy, 36, 282–300.CrossRefGoogle Scholar
  37. 37.
    Okeniyi, J. O., Obiajulu, U. E., Ogunsanwo, A. O., Odiase, N. W., & Okeniyi, E. T. (2013). CH4 emission model from the waste of Sus Domesticus and Gallus Domesticus in Nigerian local farms: Environmental implications and prospects. Mitigation and Adaptation Strategies for Global Change, 18, 325–335.CrossRefGoogle Scholar
  38. 38.
    Krishnamoorthy, K. (2006). Handbook of statistical distributions with applications. Florida: Chapman & Hall/CRC, Taylor & Francis Group, LLC.CrossRefGoogle Scholar
  39. 39.
    Lai, C.-D., Murthy, D. N. P., & Xie, M. (2006). Weibull distributions and their applications. In: H. Pham (Ed.), Springer handbook of engineering statistics (pp. 63–78). Stürtz GmbH, Würzburg Germany: Springer-Verlag London Limited.Google Scholar
  40. 40.
    Okeniyi, J. O. (2016). C10H18N2Na2O10 inhibition and adsorption mechanism on concrete steel-reinforcement corrosion in corrosive environments. Journal of the Association of Arab Universities for Basic and Applied Sciences, 20, 39–48.CrossRefGoogle Scholar
  41. 41.
    Kvam, P. H., & Vidakovic, B. (2007). Nonparametric statistics with applications to science and engineering. Hoboken, New Jersey: Wiley.CrossRefGoogle Scholar
  42. 42.
    Okeniyi, J. O., Loto, C. A., & Popoola, A. P. I. (2014). Morinda lucida effects on steel-reinforced concrete in 3.5% NaCl: Implications for corrosion-protection of wind-energy structures in saline/marine environments. Energy Procedia, 50, 421–428.Google Scholar
  43. 43.
    Yu, W., Wu, B., Huang, T., Li, X., Williams, K., & Zhao, H. (2006). Statistical methods in proteomics. In: H. Pham (Ed.), Springer handbook of engineering statistics (pp. 623–638). Stürtz GmbH, Würzburg Germany: Springer-Verlag London Limited.Google Scholar
  44. 44.
    Söylev, T. A., & Richardson, M. G. (2008). Corrosion inhibitors for steel in concrete: State-of-the-art report. Construction and Building Materials, 22, 609–622.CrossRefGoogle Scholar
  45. 45.
    Söylev, T. A., McNally, C., & Richardson, M. (2007). Effectiveness of amino alcohol-based surface-applied corrosion inhibitors in chloride-contaminated concrete. Cement and Concrete Research, 37, 972–977.CrossRefGoogle Scholar
  46. 46.
    Song, H.-W., & Saraswathy, V. (2007). Corrosion monitoring of reinforced concrete structures: A review. International Journal of Electrochemical Science, 2, 1–28.Google Scholar
  47. 47.
    Berke, N. S., & Hicks, M. C. (2004). Predicting long-term durability of steel reinforced concrete with calcium nitrite corrosion inhibitor. Cement & Concrete Composites, 26, 191–198.CrossRefGoogle Scholar
  48. 48.
    Tommaselli, M. A. G., Mariano, N. A., & Kuri, S. E. (2009). Effectiveness of corrosion inhibitors in saturated calcium hydroxide solutions acidified by acid rain components. Construction and Building Materials, 23, 328–333.CrossRefGoogle Scholar
  49. 49.
    Coffey, R., Dorai-Raj, S., O’Flaherty, V., Cormican, M., & Cummins, E. (2013). Modelling of pathogen indicator organisms in a small-scale agricultural catchment using SWAT. Human and Ecological Risk Assessment: An International Journal, 19, 232–253.CrossRefGoogle Scholar
  50. 50.
    Okeniyi, J. O., Loto, C. A., & Popoola, A. P. I. (2014). Electrochemical performance of Phyllanthus muellerianus on the corrosion of concrete steel-reinforcement in industrial/microbial simulating-environment. Portugaliae Electrochimica Acta, 32, 199–211.CrossRefGoogle Scholar
  51. 51.
    Eddy, N. O., & Mamza, P. A. P. (2009). Inhibitive and adsorption properties of ethanol extract of seeds and leaves of Azadirachta indica on the corrosion of mild steel in H2SO4. Portugaliae Electrochimica Acta, 27, 443–456.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • Joshua Olusegun Okeniyi
    • 1
    Email author
  • Abiodun Oyekola Abioye
    • 1
  • Zechariah Chiwonsoko Adikpewun
    • 1
  • Adeola Abigail Otesanya
    • 1
  • Michael Damilola Eleshin
    • 1
  • Olanrewaju Oyewale Gabriel
    • 1
  • Oluyori Adeoye
    • 1
  1. 1.Mechanical Engineering DepartmentCovenant UniversityOtaNigeria

Personalised recommendations