Advertisement

Electromagnetic Levitation Refining of Silicon–Iron Alloys for Generation of Solar Grade Silicon

  • Katherine Le
  • Yindong YangEmail author
  • Mansoor Barati
  • Alex McLean
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

At present, expensive semiconductor grade silicon (SEG-Si) is used for the manufacture of cells to convert solar energy into electricity. This results in a high cost for photovoltaic electricity compared to electricity derived from conventional sources. The processing of inexpensive metallurgical silicon, or ferrosilicon alloys, is a potentially economical refining route to produce photovoltaic silicon. With phosphorus being one of the most difficult impurities to remove by conventional techniques, this project investigated the use of electromagnetic levitation for dephosphorization of silicon–iron alloy droplets exposed to hydrogen–argon gas mixtures. The effects of time, temperature, hydrogen partial pressure, iron content in the alloy, and initial phosphorus concentration were evaluated.

Keywords

Dephosphorization Electromagnetic levitation Ferrosilicon Solar grade silicon Photovoltaic 

Notes

Acknowledgements

Appreciation is expressed to the Natural Sciences and Engineering Research Council of Canada for providing funding for this project through a Strategic Research Grant.

References

  1. 1.
    Monroe, J., & Wickander, R. (2006). Essentials of geology (4th ed.). Belmont, USA: The Thomson Corp.Google Scholar
  2. 2.
    Lynch, D. (2009). Winning the global race for solar silicon. JOM Journal of the Minerals Metals and Materials Society, 61, 41–48.CrossRefGoogle Scholar
  3. 3.
    The International Renewable Energy Agency. (2013). Solar technology brief.Google Scholar
  4. 4.
    Johnston, M., Khajavi, L., Li, M., Sokhanvaran, S., & Barati, M. (2012). High-temperature refining of metallurgical-grade silicon: A review. JOM Journal of the Minerals Metals and Materials Society, 64, 935–944.CrossRefGoogle Scholar
  5. 5.
    Ueda, S., Morita, K., & Sano, N. (1997). Thermodynamics of phosphorus in molten Si-Fe and Si-Mn alloys. Metallurgical and Materials Transactions B, 28B, 1151–1155.CrossRefGoogle Scholar
  6. 6.
    Hino, M., & Ito, K. (2010). Thermodynamic data for steelmaking. Sendai, Japan: Tohoku University Press.Google Scholar
  7. 7.
    Hectors, D., Van Reusel, K., & Diesen, J. (2008). Experimental validation of electromagnectic-thermal coupled modelling of levitation melting. Przeglad Elektrotechniczny, 84, 140–143.Google Scholar
  8. 8.
    Asakuma, Y., Sakai, Y., Hahn, S., Tsukada, T., Matsumoto, T., Fujii, H., et al. (2000). Equilibrium shape of a molten silicon drop in an electromagnetic levitator in microgravity environment. Metallurgical and Materials Transactions B, 31, 327–329.CrossRefGoogle Scholar
  9. 9.
    Popa, M. (2010). Study of an electromagnetic levitation system. Nonconventional Technologies Review, 1, 34–38.Google Scholar
  10. 10.
    Wu, P., Yang, Y., Barati, M., & McLean, A. (2014). Electromagnetic levitation of silicon and silicon-iron alloy droplets. High Temperature Materials and Processes, 33(1), 1–7.CrossRefGoogle Scholar
  11. 11.
    Wei, K. X., Ma, W. H., Dai, Y. N., Yang, B., Liu, D. C., & Wang, J. F. (2007). Vacuum distillation refining of metallurgical grade silicon (I)—Thermodynamics on removal of phosphorus from metallurgical grade silicon. Transactions of Nonferrous Metals Society of China, 17, 1022–1025.CrossRefGoogle Scholar
  12. 12.
    Khajavi, L. T., & Barati, M. (2012). Thermodynamics of phosphorus removal from silicon in solvent refining of silicon. High Temperature Material Process, 31, 627–631.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • Katherine Le
    • 1
  • Yindong Yang
    • 1
    Email author
  • Mansoor Barati
    • 1
  • Alex McLean
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations