Skip to main content

Function

  • Chapter
  • First Online:

Part of the book series: Future City ((FUCI,volume 8))

Abstract

Trees play functional roles in cities around the world. They contribute to the reduction of air pollutants, landslide stabilization, storm water management, local food supply through urban orchards and community gardens, storm water retention, brownfield reclamation, and yield forest products. Each of these functions is reviewed with examples from the 33 cities surveyed in this study.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Literature Cited

  • Anonymous (2010) Stormwater design guidelines. San Francisco, CA. www.sfwater.org/.../showdocument.aspx?...

  • Associated Press (2000) Heavy rains claim 15 lives in Ecuador capital. Associated Press, New York

    Google Scholar 

  • Benjamin MT, Winer AM (1998) Estimating the ozone-forming potential of trees and shrubs. Atmos Environ 32:53–68

    Article  Google Scholar 

  • Bioswale (2012) Bioswale Garden. Cornell University. College of Agricultural and Life Sciences. http://www.cornellplantations.org/our-gardens/botanical/bioswalegarden

  • Cardelino CA, Chameides WL (1990) Natural hydrocarbons, urbanization, and urban ozone. J Geophys Res 95(D9):13971–13979

    Article  Google Scholar 

  • Chameides WL et al (1988) The role of biogenic hydrocarbons in urban photochemical smog: Atlanta as a case study. Science 241:1473–1475

    Article  Google Scholar 

  • Chapela I et al (2001) Ectomycorrhizal fungi introduced with exotic pine plantations induce soil Carbon depletion. Soil Biol Biochem 33(12–13):1733–1740

    Article  Google Scholar 

  • de Norri B et al (1986) Accidentes Climatios y Gestion de las Quebradas de Quito. In: Paisajes Geograficos, vol 17. CEPEIGE, Quito, pp 25–44

    Google Scholar 

  • Department of Greenspace (1998) Greeenspace, Section 13. Department of Greenspace, City of Tehran

    Google Scholar 

  • Fox T et al (1985) Struggle for space: the greening of New York. Neighborhood Open Space Coalition, New York

    Google Scholar 

  • Francis M et al (1994) Community open spaces: greening neighborhoods through community action and land conservation. Island Press, Covelo

    Google Scholar 

  • Geron CD et al (1994) An improved model for estimating emissions of volatile organic compounds from forests in the eastern United States. J Geophys Res 99(D6):12773–12791

    Article  Google Scholar 

  • Gray DH, Leiser AT (1982) Biotechnical slope protection and erosion control. Krieger Publishing Company, Malabar

    Google Scholar 

  • IMQ (1992) Illustre Municipio de Quito, Direccion de Planificacion. Quito en Cifras. IMQ, Quito

    Google Scholar 

  • Jurries D (2003) Biofilters. State of Oregon Department of Environmental Quality. Salem. http://www.deq.state.or.us/nwr/stormwater.htm

  • Kittredge J (1948) Forest influences: the effects of woody vegetation on climate, water, and soil with applications to the conservation of water and the control of floods and erosion. Dover, New York

    Google Scholar 

  • Kollin C (1991) On balance: weighing the benefits and costs of urban trees. USFS. Northeastern Forest Experiment Station. Urban Forestry Project, Syracuse

    Google Scholar 

  • Lawson L (1997) Urban agriculture and its design implications. Ph.D. dissertation. University of California, Berkeley

    Google Scholar 

  • Liu XY, Ren R (2003) Characteristics and formation cause of air pollution in Beijing city. City Disaster Reduct 1:41–43

    Google Scholar 

  • Martin AC et al (1951) American wildlife plants. McGraw-Hill, New York

    Google Scholar 

  • McBride JR, Froelich D (1984) Structure and condition of older stands in parks and open space areas of San Francisco, CA. Urban Ecol 8:165–178

    Article  Google Scholar 

  • McBride JR, Mossadegh A (2000) Tree-lined canals and the urban forest of Tehran. Arboricult J 24:155–173

    Article  Google Scholar 

  • McBride JR et al (2001a) Urban forest effects on air pollution in Hefei, People's Republic of China. Technical report. Hefei Urban Forest Department. Hefei. 32 p

    Google Scholar 

  • McBride JR et al (2001b) Urban forest effects on air pollution in Ningbo, People's Republic of China. Ningbo Urban Forest Department. Ningbo, 32 p

    Google Scholar 

  • Moore A et al (1984) Plan de Manejo Bosque Protector Pinchincha. AID PRONAF, Quito

    Google Scholar 

  • Mozingo L (1997) The aesthetics of ecological design: seeing science as culture. Landsc J 16(1):46–59

    Article  Google Scholar 

  • Murray S (1999) “Human Nature”. The shaping of the urban ecosystem in spontaneous settlements of Quito, Ecuador. Ph.D. dissertation. University of California, Berkeley

    Google Scholar 

  • National Association of City Transportation Officials (2013) Urban street design guide. Island Press, Covelo

    Google Scholar 

  • Newman LA et al (1999) Remediation of trichloroethylene in an artificial aquifer with trees: a controlled field study. Environ Sci Technol 33(14):2257–2265

    Article  Google Scholar 

  • Nowak DJ (1994a) Air pollution removal by Chicago's urban forest. In: McPherson EG, Nowak DJ, Rowntree RA (eds) Chicago’s urban forest ecosystem: results of the Chicago urban forest climate project, General technical report NE-186. USDA Forest Service, NEFES, Radnor, pp 63–82

    Google Scholar 

  • Nowak DJ (1994b) Urban forest structure: the state of Chicago’s urban forest. In: McPherson EG et al (eds) Chicago’s urban forest ecosystem: results of the Chicago urban forest climate project, General technical report NE-186. U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station, Radnor, pp 3–18

    Google Scholar 

  • Nowak D (2005) Estimates of isoprene and monoterpene production by trees in New York City. Personal communication

    Google Scholar 

  • Nowak DJ, Crane DE (2000) The urban forest effects (UFORE) model: quantifying urban forest structure and functions. In: Hansen M, Burk T (eds) Integrated tools for natural resources inventories in the twentieth century: proceedings of the IUFRO conference; 16–20 August 1998, Boise. General technical report NC-212. U.S. Department of Agriculture, Forest Service, North Central Forest Experiment Station, St. Paul, pp 714–720

    Google Scholar 

  • Nowak DJ, Crane DE (2006) The urban forest effects (UFORE) model: quantifying urban forest structure and functions. In: Hansen M (ed) Second international symposium: integrated tools for natural resources inventories in the twentieth century. General technical report. USDA Forest Service

    Google Scholar 

  • Nowak DJ et al (2000) A modeling study of the impact of urban trees on ozone. Atmos Environ 34:1601–1603

    Article  Google Scholar 

  • Rowntree RA (1984) Ecology of the urban forest-introduction to part I. Urban Ecol 8:1–11

    Article  Google Scholar 

  • Rowntree RA (1986) Ecology of the urban forest-introduction to part II. Urban Ecol 10:1–10

    Google Scholar 

  • Rowntree R (1988) Ecology of the urban forest: introduction to part III. Landsc Urban Plan 15:1–10

    Article  Google Scholar 

  • Scharenbroch BC, Morgenroth J, Maule B (2015) Tree species suitability to bioswales and impact on the urban water budget. J Environ Qual 45(1):199–206

    Article  Google Scholar 

  • Strand SE et al (1995) Phytoremediation of trichloroethylene from polluted aquifers using poplars. In: Proceedings of the international poplar symposium: populus biology and its implication for management and conservation, 20–25 August, 1995, Seattle, p 88

    Google Scholar 

  • Taha H (1996) Modeling impacts of increased urban vegetation on ozone air quality in the South Coast Air Basin. Atmos Environ 30(20):3423–3430

    Article  Google Scholar 

  • Vervaeke P et al (2003) Phytoremediation prospects of willow stands on contaminated sediments: a field trial. Environ Pollut 126(2):275–282

    Article  Google Scholar 

  • Violich F (1985) Urban planning in Latin America: the challenge of metropolitan growth. College of Environmental Design, Berkeley

    Google Scholar 

  • von Fischer-Benzon RJD (1894) Altdeutsche Gartenflora. Keil und Leipzig. p 183

    Google Scholar 

  • Warner SB (1987) To dwell is to garden: a history of Boston’s community gardens. Northeastern University Press, Boston

    Google Scholar 

  • Williams D (2004) Seattle embarks on a dramatic experiment in restoration. High Country News, May 10, 2004

    Google Scholar 

  • Yang J et al (2005) The urban forest in Beijing and its role in air pollution reduction. Urban For Urban Green 3:65–78

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

McBride, J.R. (2017). Function. In: The World’s Urban Forests. Future City, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-52108-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52108-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52107-7

  • Online ISBN: 978-3-319-52108-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics