Skip to main content

Heat Conduction and Thermophysical Parameters

  • Chapter
  • First Online:
Book cover Geothermics

Part of the book series: SpringerBriefs in Earth Sciences ((BRIEFSEARTH))

Abstract

This chapter presents the basic equations for conductive heat transfer and the main thermal parameters of the rocks, in particular the thermal conductivity and radiogenic heat. Also, it outlines the most commonly used techniques for measuring these parameters. Models involving the application of mixing laws for a mineral aggregate are discussed together with techniques for estimating the in situ thermal conductivity and volumetric heat capacity . Finally, methods for determining the radiogenic heat in the crust are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdulagatova Z, Abdulagatov IM, Emirov VN (2009) Effect of temperature and pressure on the thermal conductivity of sandstone. Int J Rock Mech Min Sci 46:1055–1071

    Article  Google Scholar 

  • Balling NP (1976) Geothermal models of the crust and the uppermost mantle of the Fennoscandian shield in south Norway and the Danish embayment. J Geophys 42:237–256

    Google Scholar 

  • Beardsmore GR, Cull JP (2001) Crustal heat flow: a guide to measurement and modelling. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Beck AE (1988) Thermal properties. Methods for determining thermal conductivity and thermal diffusivity. In Haenel R, Rybach L, Stegena L (eds) Handbook of terrestrial heat flow density determination. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Beck AE, Beck JM (1958) On the measurement of the thermal conductivity of rocks by observations on a divided bar apparatus. Trans Am Geophys Union 30:1111−1123, Washington DC

    Google Scholar 

  • Benfield AE (1939) Terrestrial heat in Great Britain. Proc Roy Soc London A 173:428–450

    Article  Google Scholar 

  • Birch F (1942) Thermal conductivity and diffusivity. In Birch F, Schaier JF, Spicer HC (eds) Handbook of physic constants. Geol Soc Am 36:243−266

    Google Scholar 

  • Birch F (1950) Flow of heat in the Front Range Colorado. Bull Geol Soc Am 61:567–630

    Article  Google Scholar 

  • Blackwell DD, Spafford RE (1987) Experimental methods in continental heat flow. In: Sammis CG, Henyey TL (eds) Methods of experimental physics. Academic Press, Orlando, FL

    Google Scholar 

  • Bochiolo M, Verdoya M, Chiozzi P, Pasquale V (2012) Radiometric surveying for the assessment of radiation dose and radon specific exhalation in underground environment. J Appl Geophys 83:100–106

    Article  Google Scholar 

  • Boulvais P, Vallet JM, Estéoule-Choux J, Fourcade S, Martineau F (2000) Origin of kaolinization in Brittany (NW France) with emphasis on deposits over granite: stable isotopes (O, H) constraints. Chem Geol 168:211–223

    Article  Google Scholar 

  • Brigaud F, Vasseur G (1989) Mineralogy, porosity and fluid control on thermal conductivity of sedimentary rocks. Geophys J 98:525–542

    Article  Google Scholar 

  • Bucher C, Rybach L (1996) A simple method to determine heat production from gamma-ray logs. Mar Petrol Geol 13:313–315

    Article  Google Scholar 

  • Bullard EC (1939) Heat flow in South Africa. Pro Roy Soc London A 173:474–502

    Article  Google Scholar 

  • Carslaw HS, Jaeger JC (1986) Conduction of heat in solids, 2nd edn. Clarendon Press, Oxford

    Google Scholar 

  • Čermák V, Rybach L (1982) Thermal conductivity and specific heat of mineral and rocks. In: Angenheister G (ed) Landolt-Börnestein: numerical data and functional relationships in science and technology. Springer, Berlin, pp 305–343

    Google Scholar 

  • Chiozzi P, Pasquale V, Verdoya M (1998) Ground radiometric survey of U, Th and K on the Lipari Island, Italy. J Appl Geophys 38:209–217

    Article  Google Scholar 

  • Chiozzi P, De Felice P, Fazio A, Pasquale V, Verdoya M (2000a) Laboratory application of NaI(Tl) gamma-ray spectrometry to studies of natural radioactivity in geophysics. Appl Radiat Isot 53:127–132

    Article  Google Scholar 

  • Chiozzi P, Pasquale V, Verdoya M, De Felice P (2000b) Practical applicability of field gamma-ray scintillation spectrometry in geophysical surveys. Appl Radiat Isot 53:127–132

    Article  Google Scholar 

  • Chiozzi P, Pasquale V, Verdoya M (2001) Naturally occurring radioactivity at the Alps-Apennines transition. Radiat Measur 35:147–154

    Article  Google Scholar 

  • Chiozzi P, Pasquale V, Verdoya M (2002) Heat from radioactive elements in young volcanics by gamma-ray spectrometry. J Volcan Geoth Res 119:205–214

    Article  Google Scholar 

  • Chiozzi P, Pasquale V, Verdoya M, Minato S (2003) Gamma-ray activity in the volcanic islands of the Southern Tyrrhenian Sea. J Environ Radioact 67:235–246

    Article  Google Scholar 

  • Chiozzi P, Pasquale V, Verdoya M (2007) Radiometric survey for exploration of hydrothermal alteration in a volcanic area. J Geochem Explor 93:13–20

    Article  Google Scholar 

  • Clark SP (1957) Radiative transfer in the Earth’s mantle. Trans Am Geophys Union 38:931–938

    Article  Google Scholar 

  • Clark SP (1966) Thermal conductivity. In Clark SP (ed) Handbook of physical constants. Geol Soc Am, Memoir 97:459−482

    Google Scholar 

  • Clauser C, Huenges E (1995) Thermal conductivity of rocks and minerals. In: Ahrens TJ (ed) Rock physics and phase relations: a handbook of physical constants. American Geophysical Union, Washington DC

    Google Scholar 

  • Cull JP (1975) The pressure and temperature dependence of thermal conductivity within the Earth. PhD thesis, Oxford University, Great Britain

    Google Scholar 

  • De Vries DA, Peck AJ (1958) On the cylindrical probe method of measuring thermal conductivity with special reference to soils. Aust J Phys 11:255–271

    Article  Google Scholar 

  • Deming D, Chapman DS (1988) Heat flow in the Utah-Wyoming thrust belt from analysis of bottom-hole temperature data measured in Oil and Gas wells. J Geophys Res 93:13657–13672

    Article  Google Scholar 

  • Desai PD, Navarro RA, Hasan SE, Ho CY, DeWitt DP, West TR (1974) Thermophysical Properties of Selected Rocks. Centre for Information and Numerical Data Analysis and Synthesis, Purdue University, West Lafayette, Indiana

    Google Scholar 

  • Drabble JR, Goldsmith HJ (1961) Thermal conduction in semiconductors. Pergamon Press, New York

    Google Scholar 

  • Faure G (1986) Principle of isotopes geology, 2nd edn. Wiley, New York

    Google Scholar 

  • Fountain DM, Christensen NI (1989) Composition of the continental crust: a review, in geophysical framework of the continental United States. Geol Soc Am Memoir 172:711–742

    Article  Google Scholar 

  • Grasty RL, Holman PB, Blanchard YB (1991) Transportable calibration pads for ground and airborne gamma-ray spectrometers. Energy, Mines, and Resources Canada, Ottawa

    Google Scholar 

  • Grough ST (1979) Geoid anomalies across fracture zones and the thickness of the lithosphere. Earth Planet Sci Lett 44:224–230

    Article  Google Scholar 

  • Hadglu T, Clinton CL, Bean JE (2007) Determination of heat capacity of Yucca Mountain stratigraphic layer. Int J Rock Mech Min Sci 44:1022–1034

    Article  Google Scholar 

  • Hantschel T, Kauerauf AI (2009) Fundamentals of basin and petroleum systems modelling. Springer, Berlin

    Google Scholar 

  • Hashin Z, Shtrikman SA (1962) A variational approach to the theory of the effective magnetic permeability of multiphase materials. J Appl Phys 33:3125–3131

    Article  Google Scholar 

  • Hasterok D (2010) Thermal state of the oceanic and continental lithosphere. PhD thesis, University of Utah

    Google Scholar 

  • Hasterok D, Chapman DS (2011) Heat production and geotherms for the continental lithosphere. Earth Planet Sci Lett 307:59–70

    Article  Google Scholar 

  • Hofmeister A (2005) Dependence of diffusive radiative transfer on grain-size, temperature, and Fe-content: implications for mantle processes. J Geodyn 40:51–72

    Article  Google Scholar 

  • Horai K (1971) Thermal conductivity of rock-forming minerals. J Geophys Res 76:1278–1308

    Article  Google Scholar 

  • Horai K, Simmons G (1970) An empirical relationship between thermal conductivity and Debye temperature for silicates. J Geophys Res 75:978–982

    Article  Google Scholar 

  • IAEA International Atomic Energy Agency (1987) Preparation of gamma-ray spectrometry reference materials RGU-1, RGTh-1 and RGK-1. Technical Reports Series No. 148, Vienna

    Google Scholar 

  • IAEA International Atomic Energy Agency (1989) Construction and use of calibration facilities for radiometric field equipment. Technical Reports Series No. 309, Vienna

    Google Scholar 

  • IAEA International Atomic Energy Agency (2003) Guidelines for radioelement mapping using gamma-ray spectrometry data. Technical Reports Series No. 1363, Vienna

    Google Scholar 

  • Jessop AM (1990) Thermal geophysics. Elsevier, Amsterdam

    Google Scholar 

  • Ioffe AV, Ioffe AF (1958) Measurement of the thermal conductivity of semiconductors in the vicinity of room temperature. Soviet Phys Tech Phys 3:2163–2168

    Google Scholar 

  • Kaganov MA (1958) A theoretical analysis of the method of measuring thermal conductivity of semiconductors proposed by A.V. Ioffe. Soviet Phys Tech Phys 3:2169–2172

    Google Scholar 

  • Kappelmeyer O, Häenel R (1974) Geothermics with special reference of application. Geoexploration Monographs Gebrueder Borntraeger, Berlin

    Google Scholar 

  • Kern H, Siegesmund S (1989) A test of the relationship between seismic velocity and heat production for crustal rocks. Earth Planet Sci Lett 92:89–94

    Article  Google Scholar 

  • Ketcham RA (1996) An improved method for determination of heat production with gamma-ray scintillation spectrometry. Chem Geol 130:175–194

    Article  Google Scholar 

  • Lachenbruch AH (1970) Crustal temperature and heat production: implications of the linear heat-flow relation. J Geophys Res 75:3291–3300

    Article  Google Scholar 

  • Lawson AW (1957) On the high temperature heat conductivity of insulators. J Phys Chem Solids 3:155–156

    Article  Google Scholar 

  • Lederer CM, Shirley VS (1978) Table of isotopes, 7th edn. Wiley, New York

    Google Scholar 

  • Lewis T, Villinger H, Davis E (1993) Thermal conductivity measurement of rock fragments using a pulsed needle probe. Can J Earth Sci 30:480–485

    Article  Google Scholar 

  • Lovborg L, Mose E (1987) Counting statistics in radioelement assaying with a portable spectrometer. Geophysics 52:555–563

    Article  Google Scholar 

  • Matsuda H, Minato S, Pasquale V (2002) Evaluation of accuracy of response matrix method for environmental gamma-ray analysis. Radioisotopes 51:42−50 (in Japanese)

    Google Scholar 

  • Parrott JE, Stuckes AD (1975) Thermal conductivity of solids. Pion Ltd, London

    Google Scholar 

  • Pasquale V (1983) Sulla conducibilità termica delle rocce. Convegno del Gruppo Nazionale di Geofisica della Terra Solida, CNR, Roma, pp 765−775

    Google Scholar 

  • Pasquale V (1987) Possible thermal structure of the eastern part of the Central Alps. Nuovo Cimento 10C:129–141

    Article  Google Scholar 

  • Pasquale V, Casale G, Masella M (1988) Linear relationships between thermophysical properties and cation packing index of rocks. Preliminary results. Convegno del Gruppo Nazionale di Geofisica della Terra Solida. CNR, Roma, pp 1423−1431

    Google Scholar 

  • Pasquale V, Cabella C, Verdoya M (1990) Deep temperatures and lithospheric thickness along the European Geotraverse. Tectonophysics 176:1–11

    Article  Google Scholar 

  • Pasquale V, Chiozzi P, Gola G, Verdoya M (2008) Depth-time correction of petroleum bottom-hole temperatures in the Po Plain, Italy. Geophysics 73:E187–E196

    Article  Google Scholar 

  • Pasquale V, Gola G, Chiozzi P, Verdoya M (2011) Thermophysical properties of the Po Basin rocks. Geophys J Int 186:69–81

    Article  Google Scholar 

  • Pasquale V, Chiozzi P, Verdoya M, Gola G (2012) Heat flow in the Western Po Basin and the surrounding orogenic belts. Geophys J Int 190:8–22

    Article  Google Scholar 

  • Pasquale V, Verdoya M, Chiozzi P (2015) Measurements of rock thermal conductivity with a transient divided bar. Geothermics 53:183–189

    Article  Google Scholar 

  • Popov YA (1983) Theoretical models of the method of determination of the thermal properties of rocks on the basis of movable sources. Geol Prospect 9:97–103 (in Russian)

    Google Scholar 

  • Popov YA, Pribnow D, Sass JA, Williams CF, Burkhardt H (1999) Characterization of rock thermal conductivity by high-resolution optical scanning. Geothermics 28:253–276

    Article  Google Scholar 

  • Pribnow D, Sass JH (1995) Determination of thermal conductivity from deep boreholes. J Geophys Res 100:9981–9994

    Article  Google Scholar 

  • Robertson EC (1988) Thermal properties of rocks, USGS open file report 88-441. US Geol Survey, Reston, Virginia

    Google Scholar 

  • Roy RF, Beck AE, Touloukian YS (1981) Thermophysical properties of rocks. In: Touloukian YS, Judd WR, Roy RF (eds) Physical properties of rocks and minerals. McGraw-Hill, New York

    Google Scholar 

  • Rybach L (1971) Radiometric techniques. In: Wainerdi RE, Uken EA (eds) Modern methods of geochemical analysis. Plenum Press, New York

    Google Scholar 

  • Rybach L (1979) The relationship between seismic velocity and radioactive heat production in crustal rocks: an exponential law. Pure appl Geophys 117:75–82

    Article  Google Scholar 

  • Rybach L (1988) Determination of the heat production rate. In: Haenel R, Rybach L, Stegena L (eds) Handbook of terrestrial heat-flow density determination. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Rybach L, Buntebarth G (1984) The variation of heat generation, density and seismic velocity with rock type in the continental lithosphere. Tectonophysics 103:335–344

    Article  Google Scholar 

  • Sass JH, Lachenbruch AH, Munroe R (1971) Thermal conductivity of rocks from measurements on fragments and its application to heat flow determinations. J Geophys Res 76:2291–3401

    Google Scholar 

  • Schärli U, Rybach L (2001) Determination of specific heat capacity on rock fragments. Geothermics 30:93–110

    Article  Google Scholar 

  • Schatz JF, Simmons G (1972) Thermal conductivity of Earth materials at high temperatures. J Geophys Res 77:6966–6983

    Article  Google Scholar 

  • Schloessin HH, Dvořák Z (1972) Anisotropic lattice thermal conductivity in enstatite as a function of pressure and temperature. Geophys J R Astr Soc 27:499–516

    Article  Google Scholar 

  • Sekiguchi K (1984) A method for determining terrestrial heat flow in oil basinal areas. Tectonophysics 103:67–79

    Article  Google Scholar 

  • Somerton WH (1992) Thermal properties and temperature related behaviour of rock/fluid systems. Elsevier, Amsterdam

    Google Scholar 

  • Somerton WH, Mossahebi M (1967) Ring heat source probe for rapid determination of thermal conductivity of rocks. Rev Sci Instrum 38:1368–1371

    Article  Google Scholar 

  • Swann FG (1959) Theory of the AF Ioffe method for rapid measurement of the thermal conductivity of solid. J Franklin Inst 267:363–380

    Article  Google Scholar 

  • Tourlière B, Perrin J, Le Berre P, Pasquet JF (2003) Use of airborne gamma-ray spectrometry for kaolin exploration. J Appl Geophys 53:91–102

    Article  Google Scholar 

  • Tye RP (1969) Thermal conductivity, vol 2. Academic Press, London

    Google Scholar 

  • Verdoya M, Pasquale V, Chiozzi P (1998a) Radioactive heat production of volcanics. In: Proceedings of the international conference “The Earth’s thermal field and related research methods”, Moscow, Russia, pp 272−276

    Google Scholar 

  • Verdoya M, Pasquale V, Chiozzi P, Kukkonen IT (1998b) Radiogenic heat production in the Variscan crust: new determinations and distribution models in Corsica (northwestern Mediterranean). Tectonophysics 291:63–75

    Article  Google Scholar 

  • Verdoya M, Chiozzi P, Pasquale V (2001) Heat-production radionuclides in metamorphic rocks of the Briançonnais-Piedmont Zone (Maritime Alps). Eclogae Geol Helv 94:213–219

    Google Scholar 

  • Von Herzen RP, Maxwell AE (1959) The measurement of thermal conductivity of deep-sea sediments by a needle probe method. J Geophys Res 64:1557–1563

    Article  Google Scholar 

  • Wang J, Carson JK, North MF, Cleland DJ (2006) A new approach to modelling the effective thermal conductivity of heterogeneous materials. Int J Heat Mass Transfer 49:3075–3083

    Article  Google Scholar 

  • Waples DW, Waples JS (2004a) A review and evaluation of specific heat capacities of rocks, minerals, and subsurface fluids. Part 1, Minerals and nonporous rocks. Nat Resour Res 13:97–122

    Article  Google Scholar 

  • Waples DW, Waples JS (2004b) A review and evaluation of specific heat capacities of rocks, minerals, and subsurface fluids. Part 2, Fluids and porous rocks. Nat Resour Res 13:123–130

    Article  Google Scholar 

  • Watt DE, Ramsden D (1964) High sensitivity counting techniques. Pergamon Press, London

    Google Scholar 

  • Zimmerman RW (1989) Thermal conductivity of fluid saturated rocks. J Petrol Sci Eng 3:219–227

    Article  Google Scholar 

  • Zoth G, Haenel R (1988) Thermal conductivity. Methods for determining thermal conductivity and thermal diffusivity. In Haenel R, Rybach L, Stegena L (eds) Handbook of terrestrial heat flow density determination. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Pasquale .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Pasquale, V., Verdoya, M., Chiozzi, P. (2017). Heat Conduction and Thermophysical Parameters. In: Geothermics. SpringerBriefs in Earth Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-52084-1_2

Download citation

Publish with us

Policies and ethics