Skip to main content

Ion and Fluid Homeostasis in the Cochlea

  • Chapter
  • First Online:

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 62))

Abstract

The transduction of sound into nerve impulses requires an ionic environment that depends on a variety of ion transport processes in epithelial and endothelial cells of the cochlea. Specific ion transport functions occur in specific cell types that coordinate the production and maintenance of endolymph, which is the fluid in the lumen of the cochlear duct that supports the sensory transduction process. The critical nature of these ion transport processes is underscored by observations of hearing loss when ion transport mechanisms malfunction as a result of mutations, drug exposure, or hormonal imbalance. This chapter describes our basic understanding of salient ion transport processes and their regulation by hormones and other regulatory pathways.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alvarado, J. C., Fuentes-Santamaria, V., Melgar-Rojas, P., Valero, M. L., Gabaldón-Ull, M. C., Miller, J. M., & Juiz, J. M. (2015). Synergistic effects of free radical scavengers and cochlear vasodilators: A new otoprotective strategy for age-related hearing loss. Frontiers in Aging Neuroscience, 7, 1–7.

    Google Scholar 

  • Ando, M., Edamatsu, M., Fukuizumi, S., & Takeuchi, S. (2008). Cellular localization of facilitated glucose transporter 1 (GLUT-1) in the cochlear stria vascularis: Its possible contribution to the transcellular glucose pathway. Cell and Tissue Research, 331, 763–769.

    Google Scholar 

  • Andrews, J. C., & Honrubia, V. (2010). Premenstrual exacerbation of Meniere’s disease revisited. Otolaryngologic Clinics of North America, 43, 1029–1040.

    Google Scholar 

  • Anselmi, F., Hernandez, V. H., Crispino, G., Seydel, A., Ortolano, S., Roper, S. D., Kessaris, N., Richardson, W., Rickheit, G., Filippov, M. A., Monyer, H., & Mammano, F. (2008). ATP release through connexin hemichannels and gap junction transfer of second messengers propagate Ca2+ signals across the inner ear. Proceedings of the National Academy of Sciences of the United States of America, 105, 18770–18775.

    Google Scholar 

  • Bayazit, Y. A., & Yilmaz, M. (2006). An overview of hereditary hearing loss. ORL Journal for Oto-Rhino Laryngology and Related Specialties, 68, 57–63.

    Google Scholar 

  • Boettger, T., Hubner, C. A., Maier, H., Rust, M. B., Beck, F. X., & Jentsch, T. J. (2002). Deafness and renal tubular acidosis in mice lacking the K-Cl co-transporter Kcc4. Nature, 416, 874–878.

    Google Scholar 

  • Bottger, E. C., & Schacht, J. (2013). The mitochondrion: A perpetrator of acquired hearing loss. Hearing Research, 303, 12–19.

    Google Scholar 

  • Brown, D., Bouley, R., Paunescu, T. G., Breton, S., & Lu, H. A. J. (2012). New insights into the dynamic regulation of water and acid-base balance by renal epithelial cells. American Journal of Physiology - Cell Physiology, 302, C1421–C1433.

    Google Scholar 

  • Cazals, Y., Bevengut, M., Zanella, S., Brocard, F., Barhanin, J., & Gestreau, C. (2015). KCNK5 channels mostly expressed in cochlear outer sulcus cells are indispensable for hearing. Nature Communications, 6, 8780.

    Google Scholar 

  • Chen, J., Zhu, Y., Liang, C., Chen, J., & Zhao, H.-B. (2015). Pannexin1 channels dominate ATP release in the cochlea ensuring endocochlear potential and auditory receptor potential generation and hearing. Scientific Reports, 5, 10762.

    Google Scholar 

  • Chen, Q., Chu, H., Wu, X., Cui, Y., Chen, J., Li, J., Zhou, L., Xiong, H., Wang, Y., & Li, Z. (2011). The expression of plasma membrane Ca2+-ATPase isoform 2 and its splice variants at sites A and C in the neonatal rat cochlea. International Journal of Pediatric Otorhinolaryngology, 75, 196–201.

    Google Scholar 

  • Chien, W. W., Monzack, E. L., McDougald, D. S., & Cunningham, L. L. (2015). Gene therapy for sensorineural hearing loss. Ear and Hearing, 36, 1–7.

    Google Scholar 

  • Choi, B. Y., Kim, H. M., Ito, T., Lee, K. Y., Li, X., Monahan, K., Wen, Y., Wilson, E., Kurima, K., Saunders, T. L., Petralia, R. S., Wangemann, P., Friedman, T. B., & Griffith, A. J. (2011). Mouse model of enlarged vestibular aqueducts defines temporal requirement of Slc26a4 expression for hearing acquisition. Journal of Clinical Investigation, 121, 4516–4525.

    Google Scholar 

  • Curtis, L. M., ten Cate, W. J., & Rarey, K. E. (1993). Dynamics of Na, K-ATPase sites in lateral cochlear wall tissues of the rat. European Archives of Oto-Rhino-Laryngology, 250, 265–270.

    Google Scholar 

  • Delpire, E. (2015). Research antibodies: Do not use them to stain your reputation. American Journal of Physiology-Cell Physiology, 309, C707–C708.

    Google Scholar 

  • Eckhard, A., Gleiser, C., Arnold, H., Rask-Andersen, H., Kumagami, H., Müller, M., Hirt, B., & Löwenheim, H. (2012). Water channel proteins in the inner ear and their link to hearing impairment and deafness. Molecular Aspects of Medicine, 33, 612–637.

    Google Scholar 

  • Eckhard, A., Dos, S. A., Liu, W., Bassiouni, M., Arnold, H., Gleiser, C., Hirt, B., Harteneck, C., Müller, M., Rask-Andersen, H., & Löwenheim, H. (2015). Regulation of the perilymphatic-endolymphatic water shunt in the cochlea by membrane translocation of aquaporin-5. Pflügers Archiv - European Journal of Physiology, 467, 2571–2588.

    Google Scholar 

  • Effertz, T., Scharr, A. L., & Ricci, A. J. (2015). The how and why of identifying the hair cell mechano-electrical transduction channel. Pflügers Archiv - European Journal of Physiology, 467, 73–84.

    Google Scholar 

  • Erichsen, S., Stierna, P., Bagger-Sjoback, D., Curtis, L. M., Rarey, K. E., Schmid, W., & Hultcrantz, M. (1998). Distribution of Na, K-ATPase is normal in the inner ear of a mouse with a null mutation of the glucocorticoid receptor. Hearing Research, 124, 146–154.

    Google Scholar 

  • Ferrary, E., Sterkers, O., Saumon, G., Tran Ba Huy, P., & Amiel C. (1987). Facilitated transfer of glucose from blood into perilymph in the rat cochlea. American Journal of Physiology - Renal Physiology, 253, F59–F65.

    Google Scholar 

  • Firbas, W., Gruber, H., & Wicke, W. (1981). The blood vessels of the limbus spiralis. Archives of Oto-Rhino-Laryngology, 232, 131–137.

    Google Scholar 

  • Foster, C. A., & Breeze, R. E. (2013). The Meniere attack: An ischemia/reperfusion disorder of inner ear sensory tissues. Medical Hypotheses, 81, 1108–1115.

    Google Scholar 

  • Furuta, H., Luo, L., Hepler, K., & Ryan, A. F. (1998). Evidence for differential regulation of calcium by outer versus inner hair cells: Plasma membrane Ca-ATPase gene expression. Hearing Research, 123, 10–26.

    Google Scholar 

  • Gao, Y., Yechikov, S., Vazquez, A. E., Chen, D., & Nie, L. (2013). Impaired surface expression and conductance of the KCNQ4 channel lead to sensorineural hearing loss. Journal of Cellular and Molecular Medicine, 17, 889–900.

    Google Scholar 

  • Gow, A., Davies, C., Southwood, C. M., Frolenkov, G., Chrustowski, M., Ng, L., Yamauchi, D., Marcus, D. C., & Kachar, B. (2004). Deafness in Claudin 11-null mice reveals the critical contribution of basal cell tight junctions to stria vascularis function. The Journal of Neuroscience, 24, 7051–7062.

    Google Scholar 

  • Guipponi, M., Vuagniaux, G., Wattenhofer, M., Shibuya, K., Vazquez, M., Dougherty, L., Scamuffa, N., Guida, E., Okui, M., Rossier, C., Hancock, M., Buchet, K., Reymond, A., Hummler, E., Marzella, P. L., Kudoh, J., Shimizu, N., Scott, H. S., Antonarakis, S., & Rossier, B. C. (2002). The transmembrane serine protease (TMPRSS3) mutated in deafness DFNB8/10 activates the epithelial sodium channel (ENaC) in vitro. Human Molecular Genetics, 11, 2829–2836.

    Google Scholar 

  • Heitzmann, D., Koren, V., Wagner, M., Sterner, C., Reichold, M., Tegtmeier, I., Volk, T., & Warth, R. (2007). KCNE beta subunits determine pH sensitivity of KCNQ1 potassium channels. Cellular Physiology and Biochemistry, 19, 21–32.

    Google Scholar 

  • Hirose, K., Hartsock, J. J., Johnson, S., Santi, P., & Salt, A. N. (2014). Systemic lipopolysaccharide compromises the blood-labyrinth barrier and increases entry of serum fluorescein into the perilymph. Journal of the Association for Research in Otolaryngology, 15, 707–719.

    Google Scholar 

  • Hoenderop, J. G., Nilius, B., & Bindels, R. J. (2005). Calcium absorption across epithelia. Physiological Reviews, 85, 373–422.

    Google Scholar 

  • Hosoi, K. (2016). Physiological role of aquaporin 5 in salivary glands. Pflügers Archiv - European Journal of Physiology, 468, 519–539.

    Google Scholar 

  • Housley, G. D., Morton-Jones, R., Vlajkovic, S. M., Telang, R. S., Paramananthasivam, V., Tadros, S. F., Wong, A. C. Y., Froud, K. E., Cederholm, J. M. E. Sivakumaran, Y., Snguanwongchai, P., Khakh, B. S., Cockayne, D. A., Thorne, P. R., & Ryan, A. F. (2013). ATP-gated ion channels mediate adaptation to elevated sound levels. Proceedings of the National Academy of Sciences of the United States of America, 110, 7494–7499.

    Google Scholar 

  • Hoya, N., Ogawa, K., Inoue, Y., Takiguchi, Y., & Kanzaki, J. (2001). The glutamate receptor agonist, AMPA, induces acetylcholine release in guinea pig cochlea; A microdialysis study. Neuroscience Letters, 311, 206–208.

    Google Scholar 

  • Ito, T., Li, X., Kurima, K., Choi, B. Y., Wangemann, P., & Griffith, A. J. (2014). Slc26a4-insufficiency causes fluctuating hearing loss and stria vascularis dysfunction. Neurobiology of Disease, 66, 53–65.

    Google Scholar 

  • Jagger, D. J., & Forge, A. (2015). Connexins and gap junctions in the inner ear—it’s not just about K+ recycling. Cell and Tissue Research, 360, 633–644.

    Google Scholar 

  • Johnstone, B. M., Patuzzi, R., Syka, J., & Sykova, E. (1989). Stimulus-related potassium changes in the organ of Corti of guinea-pig. The Journal of Physiology, 408, 77–92.

    Google Scholar 

  • Juhn, S. K., Rybak, L. P., & Fowlks, W. L. (1982). Transport characteristics of the blood-perilymph barrier. American Journal of Otolaryngology, 3, 392–396.

    Google Scholar 

  • Kambayashi, J., Kobayashi, T., DeMott, J. E., Marcus, N. Y., Thalmann, I., & Thalmann, R. (1982). Effect of substrate-free vascular perfusion upon cochlear potentials and glycogen of the stria vascularis. Hearing Research, 6, 223–240.

    Google Scholar 

  • Kikuchi, T., Kimura, R. S., Paul, D. L., Takasaka, T., & Adams, J. C. (2000). Gap junction systems in the mammalian cochlea. Brain Research Reviews, 32, 163–166.

    Google Scholar 

  • Kim, K. X., Sanneman, J. D., Kim, H. M., Harbidge, D. G., Xu, J., Soleimani, M., Wangemann, P., & Marcus, D. C. (2014). Slc26a7 chloride channel activity and localization in mouse Reissner’s membrane epithelium. PLoS ONE, 9, e97191.

    Google Scholar 

  • Kim, S. H., & Marcus, D. C. (2011). Regulation of sodium transport in the inner ear. Hearing Research, 280, 21–29.

    Google Scholar 

  • Kofuji, P., Biedermann, B., Siddharthan, V., Raap, M., Iandiev, I., Milenkovic, I., Thomzig, A., Veh, R. W., Bringmann, A., & Reichenbach, A. (2002). Kir potassium channel subunit expression in retinal glial cells: Implications for spatial potassium buffering. Glia, 39, 292–303.

    Google Scholar 

  • Konishi, T., Hamrick, P. E., & Walsh, P. J. (1978). Ion transport in guinea pig cochlea. I. Potassium and sodium transport. Acta Oto-Laryngologica, 86, 22–34.

    Google Scholar 

  • Kozel, P. J., Friedman, R. A., Erway, L. C., Yamoah, E. N., Liu, L. H., Riddle, T., Duffy, J. J., Doetschman, T., Miller, M. L., Cardell, E. L., & Shull, G. E. (1998). Balance and hearing deficits in mice with a null mutation in the gene encoding plasma membrane Ca2+-ATPase isoform 2. Journal of Biological Chemistry, 273, 18693–18696.

    Google Scholar 

  • Kumagami, H., Loewenheim, H., Beitz, E., Wild, K., Schwartz, H., Yamashita, K., Schultz, J., Paysan, J., Zenner, H.-P., & Ruppersberg, J. P. (1998). The effect of anti-diuretic hormone on the endolymphatic sac of the inner ear. Pflügers Archiv - European Journal of Physiology, 436, 970–975.

    Google Scholar 

  • Laurell, G., Viberg, A., Teixeira, M., Sterkers, O., & Ferrary, E. (2000). Blood-perilymph barrier and ototoxicity: An in vivo study in the rat. Acta Oto-Laryngologica, 120, 796–803.

    Google Scholar 

  • Laurell, G. F., Teixeira, M., Duan, M., Sterkers, O., & Ferrary, E. (2008). Intact blood-perilymph barrier in the rat after impulse noise trauma. Acta Oto-Laryngologica, 128, 608–612.

    Google Scholar 

  • Lee, J. H., & Marcus, D. C. (2008). Purinergic signaling in the inner ear. Hearing Research, 235, 1–7.

    Google Scholar 

  • Lee, J. H., Chiba, T., & Marcus, D. C. (2001). P2X2 receptor mediates stimulation of parasensory cation absorption by cochlear outer sulcus cells and vestibular transitional cells. The Journal of Neuroscience, 21, 9168–9174.

    Google Scholar 

  • Li, J., & Verkman, A. S. (2001). Impaired hearing in mice lacking aquaporin-4 water channels. Journal of Biological Chemistry, 276, 31233–31237.

    Google Scholar 

  • Liu, J., Kozakura, K., & Marcus, D. C. (1995). Evidence for purinergic receptors in vestibular dark cell and strial marginal cell epithelia of the gerbil. Auditory Neuroscience, 1, 331–340.

    Google Scholar 

  • Ma, Y. L., Gerhardt, K. J., Curtis, L. M., Rybak, L. P., Whitworth, C., & Rarey, K. E. (1995). Combined effects of adrenalectomy and noise exposure on compound action potentials, endocochlear potentials and endolymphatic potassium concentrations. Hearing Research, 91, 79–86.

    Google Scholar 

  • Maekawa, C., Kitahara, T., Kizawa, K., Okazaki, S., Kamakura, T., Horii, A., Imai, T., Doi, K., Inohara, H., & Kiyama, H. (2010). Expression and translocation of aquaporin-2 in the endolymphatic sac in patients with Meniere’s disease. Journal of Neuroendocrinology, 22, 1157–1164.

    Google Scholar 

  • Mammano, F. (2013). ATP-dependent intercellular Ca2+ signaling in the developing cochlea: Facts, fantasies and perspectives. Seminars in Cell and Developmental Biology, 24, 31–39.

    Google Scholar 

  • Marcus, D. C. (2012). Acoustic transduction. In N. Sperelakis (Ed.), Cell physiology source book: Essentials of membrane biophysics (pp. 649–668). San Diego, CA: Academic Press.

    Google Scholar 

  • Marcus, D. C., & Wangemann, P. (2009). Cochlear and vestibular function and dysfunction. In F. J. Alvarez-Leefmans, & E. Delpire (Eds.), Physiology and Pathology of Chloride Transporters and Channels in the Nervous System: From Molecules to Diseases (pp. 425–437). New York: Elsevier.

    Google Scholar 

  • Marcus, D. C., & Wangemann, P. (2010). Inner ear fluid homeostasis. In P. A. Fuchs (Ed.), The Oxford Handbook of Auditory Science: The Ear (pp. 213–230). Oxford, UK: Oxford University Press.

    Google Scholar 

  • Marcus, D. C., Wu, T., Wangemann, P., & Kofuji, P. (2002). KCNJ10 (Kir4.1) potassium channel knockout abolishes endocochlear potential. American Journal of Physiology - Cell Physiology, 282, C403–C407.

    Google Scholar 

  • Merchant, S. M., Adams, J. C., & Nadol, J. B. (2005). Meniere’s syndrome: Are symptoms caused by endolymphatic hydrops? The Registry, 12, 1–7.

    Google Scholar 

  • Miyazaki, H., Wangemann, P., & Marcus, D. C. (2016). The gastric H, K-ATPase in stria vascularis contributes to pH regulation of cochlear endolymph but not to K secretion. BMC Physiology, 17(1), 1.

    Google Scholar 

  • Morton-Jones, R. T., Vlajkovic, S. M., Thorne, P. R., Cockayne, D. A., Ryan, A. F., & Housley, G. D. (2015). Properties of ATP-gated ion channels assembled from P2X2 subunits in mouse cochlear Reissner’s membrane epithelial cells. Purinergic Signalling, 11, 551–560.

    Google Scholar 

  • Mosnier, I., Teixeira, M., Loiseau, A., Fernandes, I., Sterkers, O., Amiel, C., & Ferrary, E. (2001). Effects of acute and chronic hypertension on the labyrinthine barriers in rat. Hearing Research, 151, 227–236.

    Google Scholar 

  • Muñoz, D. J., Kendrick, I. S., Rassam, M., & Thorne, P. R. (2001). Vesicular storage of adenosine triphosphate in the guinea-pig cochlear lateral wall and concentrations of ATP in the endolymph during sound exposure and hypoxia. Acta Oto-Laryngologica, 121, 10–15.

    Google Scholar 

  • Nakaya, K., Harbidge, D. G., Wangemann, P., Schultz, B. D., Green, E. D., Wall, S. M., & Marcus, D. C. (2007). Lack of pendrin HCO3 transport elevates vestibular endolymphatic [Ca2+] by inhibition of acid-sensitive TRPV5 and TRPV6 channels. American Journal of Physiology - Renal Physiology, 292, F1314–F1321.

    Google Scholar 

  • Nenov, A. P., Chen, C., & Bobbin, R. P. (1998). Outward rectifying potassium currents are the dominant voltage activated currents present in Deiters’ cells. Hearing Research, 123, 168–182.

    Google Scholar 

  • Nishio, S. Y., Hattori, M., Moteki, H., Tsukada, K., Tsukada, K., Miyagawa, M., Naito, T., Yoshimura, H., Iwasa, Y., Mori, K., Shima, Y, Sakuma, N., & Usami, S. (2015). Gene expression profiles of the cochlea and vestibular endorgans: Localization and function of genes causing deafness. The Annals of Otology, Rhinology and Laryngology, 124 Suppl. 1, 6S–48S.

    Google Scholar 

  • Nishioka, R., Takeda, T., Kakigi, A., Okada, T., Takebayashi, S., Taguchi, D., Nishimura, M., & Hyodo, M. (2010). Expression of aquaporins and vasopressin type 2 receptor in the stria vascularis of the cochlea. Hearing Research, 260, 11–19.

    Google Scholar 

  • Oonk, A. M., Huygen, P. L., Kunst, H. P., Kremer, H., & Pennings, R. J. E. (2015). Features of autosomal recessive nonsyndromic hearing impairment: A review to serve as a reference. Clinical Otolaryngology, 41, 487–497. doi:10.1111/coa.12567.

  • Patuzzi, R. (2011a). Ion flow in cochlear hair cells and the regulation of hearing sensitivity. Hearing Research, 280, 3–20.

    Google Scholar 

  • Patuzzi, R. (2011b). Ion flow in stria vascularis and the production and regulation of cochlear endolymph and the endolymphatic potential. Hearing Research, 277, 4–19.

    Google Scholar 

  • Pondugula, S. R., Raveendran, N. N., & Marcus, D. C. (2010). Ion transport regulation by P2Y receptors, protein kinase C and phosphatidylinositol 3-kinase within the semicircular canal duct epithelium. BMC Research Notes, 3, 100.

    Google Scholar 

  • Robbins, J. (2001). KCNQ potassium channels: Physiology, pathophysiology, and pharmacology. Pharmacology and Therapeutics, 90, 1–19.

    Google Scholar 

  • Sakai, Y., Harvey, M., & Sokolowski, B. (2011). Identification and quantification of full-length BK channel variants in the developing mouse cochlea. Journal of Neuroscience Research, 89, 1747–1760.

    Google Scholar 

  • Salt, A. N., Melichar, I., & Thalmann, R. (1987). Mechanisms of endocochlear potential generation by stria vascularis. The Laryngoscope, 97, 984–991.

    Google Scholar 

  • Salt, A. N., Ohyama, K., & Thalmann, R. (1991a). Radial communication between the perilymphatic scalae of the cochlea. I: Estimation by tracer perfusion. Hearing Research, 56, 29–36.

    Google Scholar 

  • Salt, A. N., Ohyama, K., & Thalmann, R. (1991b). Radial communication between the perilymphatic scalae of the cochlea. II: Estimation by bolus injection of tracer into the sealed cochlea. Hearing Research, 56, 37–43.

    Google Scholar 

  • Salt, A. N., Kellner, C., & Hale, S. (2003). Contamination of perilymph sampled from the basal cochlear turn with cerebrospinal fluid. Hearing Research, 182, 24–33.

    Google Scholar 

  • Sellick, P. M., & Johnstone, B. M. (1972). Changes in cochlear endolymph Na+ concentration measured with Na+ specific microelectrodes. Pflügers Archiv - European Journal of Physiology, 336, 11–20.

    Google Scholar 

  • Shen, Z., Marcus, D. C., Sunose, H., Chiba, T., & Wangemann, P. (1997). IsK channel in strial marginal cells: Voltage-dependence, ion-selectivity, inhibition by 293B and sensitivity to clofilium. Auditory Neuroscience, 3, 215–230.

    Google Scholar 

  • Shi, X., Gillespie, P. G., & Nuttall, A. L. (2005). Na+ influx triggers bleb formation on inner hair cells. American Journal of Physiology - Cell Physiology, 288, C1332–C1341.

    Google Scholar 

  • Singh, R., & Wangemann, P. (2008). Free radical stress-mediated loss of Kcnj10 protein expression in stria vascularis contributes to deafness in Pendred syndrome mouse model. American Journal of Physiology - Renal Physiology, 294, F139–F148.

    Google Scholar 

  • Spicer, S. S., & Schulte, B. A. (1996). The fine structure of spiral ligament cells relates to ion return to the stria and varies with place-frequency. Hearing Research, 100, 80–100.

    Google Scholar 

  • Sterkers, O., Saumon, G., Tran Ba, H. P., & Amiel, C. (1982). K, Cl, and H2O entry in endolymph, perilymph, and cerebrospinal fluid of the rat. American Journal of Physiology - Renal Physiology, 243, F173–F180.

    Google Scholar 

  • Strutz-Seebohm, N., Seebohm, G., Fedorenko, O., Baltaev, R., Engel, J., Knirsch, M., & Lang, F. (2006). Functional coassembly of KCNQ4 with KCNE-β-subunits in Xenopus oocytes. Cellular Physiology and Biochemistry, 18, 57–66.

    Google Scholar 

  • Takeda, T., Takeda, S., Kitano, H., Okada, T., & Kakigi, A. (2000). Endolymphatic hydrops induced by chronic administration of vasopressin. Hearing Research, 140, 1–6.

    Google Scholar 

  • Takeuchi, S., Ando, M., & Kakigi, A. (2000). Mechanism generating endocochlear potential: Role played by intermediate cells in stria vascularis. Biophysical Journal, 79, 2572–2582.

    Google Scholar 

  • Takumida, M., Kakigi, A., Egami, N., Nishioka, R., & Anniko, M. (2012). Localization of aquaporins 1, 2, and 3 and vasopressin type 2 receptor in the mouse inner ear. Acta Oto-Laryngologica, 132, 807–813.

    Google Scholar 

  • ten Cate, W. J., Curtis, L. M., Small, G. M., & Rarey, K. E. (1993). Localization of glucocorticoid receptors and glucocorticoid receptor mRNAs in the rat cochlea. The Laryngoscope, 103, 865–871.

    Google Scholar 

  • ten Cate, W. J., Curtis, L. M., & Rarey, K. E. (1994). Effects of low-sodium, high-potassium dietary intake on cochlear lateral wall Na+, K+-ATPase. European Archives of Oto-Rhino-Laryngology, 251, 6–11.

    Google Scholar 

  • Thalmann, R. (1971). Metabolic features of auditory and vestibular systems. The Laryngoscope, 81, 1245–1260.

    Google Scholar 

  • Thorne, P. R., Muñoz, D. J., & Housley, G. D. (2004). Purinergic modulation of cochlear partition resistance and its effect on the endocochlear potential in the guinea pig. Journal of the Association for Research in Otolaryngology, 5, 58–65.

    Google Scholar 

  • Tranebjaerg, L., Samson, R. A., & Green, G. E. (2014). Jervell and Lange-Nielsen syndrome. In R. A. Pagon, M. P. Adam, H. H. Ardinger, S. E. Wallace, H. C. Mefford, & K. Stephens (Eds.), GeneReviews. Available at https://www.ncbi.nlm.nih.gov/books/NBK1405/.

  • Turner, J. R., Buschmann, M. M., Romero-Calvo, I., Sailer, A., & Shen, L. (2014). The role of molecular remodeling in differential regulation of tight junction permeability. Seminars in Cell and Developmental Biology, 36, 204–212.

    Google Scholar 

  • Verkman, A. S., & Mitra, A. K. (2000). Structure and function of aquaporin water channels. American Journal of Physiology - Renal Physiology, 278, F13–F28.

    Google Scholar 

  • Vlajkovic, S. M., Housley, G. D., Muñoz, D. J., Robson, S. C., Sévigny, J., Wang, C. J. H., & Thorne, P. R. (2004). Noise exposure induces up-regulation of ecto-nucleoside triphosphate diphosphohydrolases 1 and 2 in rat cochlea. Neuroscience, 126, 763–773.

    Google Scholar 

  • Wada, J., Kambayashi, J., Marcus, D. C., & Thalmann, R. (1979). Vascular perfusion of the cochlea: Effect of potassium-free and rubidium-substituted media. Archives of Oto-Rhino-Laryngology, 225, 79–81.

    Google Scholar 

  • Wangemann, P. (2002). Adrenergic and muscarinic control of cochlear endolymph production. Advances in Oto-Rhino-Laryngology, 59, 42–50.

    Google Scholar 

  • Wangemann, P. (2013). Mouse models for pendrin-associated loss of cochlear and vestibular function. Cellular Physiology and Biochemistry, 32, 157–165.

    Google Scholar 

  • Wangemann, P., Liu, J., & Marcus, D. C. (1995a). Ion transport mechanisms responsible for K+ secretion and the transepithelial voltage across marginal cells of stria vascularis in vitro. Hearing Research, 84, 19–29.

    Google Scholar 

  • Wangemann, P., Liu, J., & Shiga, N. (1995b). The pH-sensitivity of transepithelial K+ transport in vestibular dark cells. Journal of Membrane Biology, 147, 255–262.

    Google Scholar 

  • Wangemann, P., Shen, Z., & Liu, J. (1996). K+-induced stimulation of K+ secretion involves activation of the IsK channel in vestibular dark cells. Hearing Research, 100, 201–210.

    Google Scholar 

  • Wangemann, P., Nakaya, K., Wu, T., Maganti, R. J., Itza, E. M., Sanneman, J. D., Harbidge, D. G., Billings, S., & Marcus, D. C. (2007). Loss of cochlear HCO3 secretion causes deafness via endolymphatic acidification and inhibition of Ca2+ reabsorption in a Pendred syndrome mouse model. American Journal of Physiology - Renal Physiology, 292, F1345–F1353.

    Google Scholar 

  • Wangemann, P., Kim, H. M., Billings, S., Nakaya, K., Li, X., Singh, R., Sharlin, D. S., Forrest, D., Marcus, D. C., & Fong, P. (2009). Developmental delays consistent with cochlear hypothyroidism contribute to failure to develop hearing in mice lacking Slc26a4/pendrin expression. American Journal of Physiology - Renal Physiology, 297, F1435–F1447.

    Google Scholar 

  • Wood, J. D., Muchinsky, S. J., Filoteo, A. G., Penniston, J. T., & Tempel, B. L. (2004). Low endolymph calcium concentrations in deafwaddler 2J mice suggest that PMCA2 contributes to endolymph calcium maintenance. Journal of the Association for Research in Otolaryngology, 5, 99–110.

    Google Scholar 

  • Yamauchi, D., Raveendran, N. N., Pondugula, S. R., Kampalli, S. B., Singh, R., Wangemann, P., & Marcus, D. C. (2005). Vitamin D upregulates expression of ECaC1 mRNA in semicircular canal. Biochemical and Biophysical Research Communications, 331, 1353–1357.

    Google Scholar 

  • Yamauchi, D., Nakaya, K., Raveendran, N. N., Harbidge, D. G., Singh, R., Wangemann, P., & Marcus, D. C. (2010). Expression of epithelial calcium transport system in rat cochlea and vestibular labyrinth. BMC Physiology, 10, 1.

    Google Scholar 

  • Yamoah, E. N., Lumpkin, E. A., Dumont, R. A., Smith, P. J., Hudspeth, A. J., & Gillespie, P. G. (1998). Plasma membrane Ca2+-ATPase extrudes Ca2+ from hair cell stereocilia. The Journal of Neuroscience, 18, 610–624.

    Google Scholar 

  • Yao, X. F., & Rarey, K. E. (1996). Localization of the mineralocorticoid receptor in rat cochlear tissue. Acta Oto-Laryngologica, 116, 493–496.

    Google Scholar 

  • Yoo, J. C., Kim, H. Y., Han, K. H., Oh, S. H., Chang, S. O., Marcus, D. C., & Lee, J. H. (2012). Na+ absorption by Claudius’ cells is regulated by purinergic signaling in the cochlea. Acta Oto-Laryngologica, 132 Suppl. 1, S103–S108.

    Google Scholar 

  • Yoshihara, T., & Igarashi, M. (1987). Cytochemical localization of Ca++-ATPase activity in the lateral cochlear wall of the guinea pig. Archives of Oto-Rhino-Laryngology, 243, 395–400.

    Google Scholar 

  • Zidanic, M., & Brownell, W. E. (1990). Fine structure of the intracochlear potential field. I. The silent current. Biophysical Journal, 57, 1253–1268.

    Google Scholar 

Download references

Acknowledgements

This work was supported by Grant R01-DC012151 from the National Institute on Deafness and Other Communication Diseases, National Institutes of Health, and by the Kansas State University College of Veterinary Medicine.

Compliance with Ethics Requirements Philine Wangemann declares that she has no conflict of interest. Daniel C. Marcus declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philine Wangemann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Wangemann, P., Marcus, D.C. (2017). Ion and Fluid Homeostasis in the Cochlea. In: Manley, G., Gummer, A., Popper, A., Fay, R. (eds) Understanding the Cochlea. Springer Handbook of Auditory Research, vol 62. Springer, Cham. https://doi.org/10.1007/978-3-319-52073-5_9

Download citation

Publish with us

Policies and ethics