Skip to main content

Remote Sensing the Cochlea: Otoacoustics

  • Chapter
  • First Online:
Understanding the Cochlea

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 62))

Abstract

The ear is a remarkable detector. It is both highly sensitive and selective and operates over a large dynamic range spanning more than 12 orders of magnitude of energy. Perhaps surprisingly, not only does it respond to sound but emits it as well. These sounds, known as otoacoustic emissions (OAEs), provide a means to probe the fundamental biophysics underlying transduction and amplification in the ear. This chapter outlines the theoretical considerations describing the underlying biomechanics of OAE generation, highlights the various uses of OAEs (both scientific and clinical), including comparative approaches, and motivates open questions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    When using complex notation, this equation is sometimes expressed in a simplified complex form (“normal form”) that captures qualitatively similar dynamics: \( \dot{z} = - \mu z + i\omega_{0} z + z\left| {z^{2} } \right| + F\left( t \right) \). See Hudspeth (2008).

References

  • Abdala, C., Sinninger, Y. S., Ekelid, M., & Zeng, F. G. (1996). Distortion product otoacoustic emission suppression tuning curves in human adults and neonates. Hearing Research, 98, 38–53.

    Google Scholar 

  • Aranyosi, A. J. (2006). A “twin-engine” model of level-dependent cochlear motion. In A. L. Nuttall, T. Ren, P. Gillespie, K. Grosh, & E. de Boer (Eds.), Auditory Mechanisms: Processes and Models (pp. 500–501). Singapore: World Scientific Publishing Co.

    Google Scholar 

  • Avan, P., Büki, B., & Petit, C. (2013). Auditory distortions: Origins and functions. Physiological Reviews, 93, 1563–1619.

    Google Scholar 

  • Bell, A., & Wit, H. P. (2015). The vibrating reed frequency meter: Digital investigation of an early cochlear model. PeerJ, 3, e1333. doi:10.7717/peerj.1333.

  • Berezina-Greene, M. A., & Guinan, J. J. (2015). Stimulus frequency otoacoustic emission delays and generating mechanisms in guinea pigs, chinchillas, and simulations. Journal of the Association for Research in Otolaryngology, 16(6), 679–694.

    Google Scholar 

  • Bergevin, C. (2007). Comparative Approaches to Otoacoustic Emissions: Towards an Understanding of Why the Ear Emits Sound. PhD Thesis, Massachusetts Institute of Technology, Cambridge, MA.

    Google Scholar 

  • Bergevin, C. (2011). Comparison of otoacoustic emissions within gecko subfamilies: Morphological implications for auditory function in lizards. Journal of the Association for Research in Otolaryngology, 12(2), 203–217.

    Google Scholar 

  • Bergevin, C., & Shera, C. A. (2010). Coherent reflection without traveling waves: On the origin of long-latency otoacoustic emissions in lizards. The Journal of the Acoustical Society of America, 127(4), 2398–2409.

    Google Scholar 

  • Bergevin, C., Freeman, D. M., Saunders, J. C., & Shera, C. A. (2008). Otoacoustic emissions in humans, birds, lizards, and frogs: Evidence for multiple generation mechanisms. Journal of Comparative Physiology A, 194, 665–683.

    Google Scholar 

  • Bergevin, C., Velenovsky, D. S., & Bonine, K. E. (2010). Tectorial membrane morphological variation: Effects upon stimulus frequency otoacoustic emissions. Biophysical Journal, 99, 1064–1072.

    Google Scholar 

  • Bergevin, C., Velenovsky, D. S., & Bonine, K. E. (2011a). Coupled, active oscillators and lizard otoacoustic emissions. In C. A. Shera & E. S. Olson (Eds.), What Fire Is in Mine Ears: Progress in Auditory Biomechanics: Proceedings of the 11th International Mechanics of Hearing Workshop, Williamstown, MA, July 16–22, 2011 (pp. 453–460). Melville, NY: American Institute of Physics Conference Proceedings 1403.

    Google Scholar 

  • Bergevin, C., McDermott, J., Roy, S., Li, F., Shera, C., & Wang, X. (2011b). Stimulus-frequency otoacoustic emissions as a probe of cochlear tuning in the common marmoset. Association for Research in Otolaryngology Abstracts, 34, 371.

    Google Scholar 

  • Bergevin, C., Fulcher, A., Richmond, S., Velenovsky, D., & Lee, J. (2012a). Interrelationships between spontaneous and low-level stimulus-frequency otoacoustic emissions in humans. Hearing Research, 285(1–2), 20–28.

    Google Scholar 

  • Bergevin, C., Walsh, E. J., McGee, J., & Shera, C. A. (2012b). Probing cochlear tuning and tonotopy in the tiger using otoacoustic emissions. Journal of Comparative Physiology A, 198(8), 617–624.

    Google Scholar 

  • Bergevin, C., Manley, G. A., & Köppl, C. (2015a). Salient features of otoacoustic emissions are common across tetrapod groups and suggest shared properties of generation mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 112(11), 3362–3367.

    Google Scholar 

  • Bergevin, C., McKetton, L., Stone, V., Grahn, J., & Purcell, D. (2015b). No otoacoustic evidence for a peripheral basis underlying absolute pitch. The Journal of the Acoustical Society of America, 137, 2409.

    Google Scholar 

  • Berlin, C. I., Hood, L., Morlet, T., Rose, K., & Brashears, S. (2003). Auditory neuropathy/dys-synchrony: Diagnosis and management. Mental Retardation and Developmental Disabilities Research Reviews, 9, 225–231.

    Google Scholar 

  • Bharadwaj, H. M., Masud, S., Mehraei, G., Verhulst, S., & Shinn-Cunningham, B. G. (2015). Individual differences reveal correlates of hidden hearing deficits. The Journal of Neuroscience, 35(5), 2161–2172.

    Google Scholar 

  • Bialek, W. (2012). Biophysics: Searching for Principles. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Bialek, W., & Wit, H. P. (1984). Quantum limits to oscillator stability: Theory and experiments on acoustic emissions from the human ear. Physics Letters A, 104(3), 173–178.

    Google Scholar 

  • Bian, L., Chertoff, M. E., & Miller, E. (2002). Deriving a cochlear transducer function from low-frequency modulation of distortion product otoacoustic emissions. The Journal of the Acoustical Society of America, 112(1), 198–210.

    Google Scholar 

  • Boege, P., & Janssen, T. (2002). Pure-tone threshold estimation from extrapolated distortion product otoacoustic emission I/O-functions in normal and cochlear hearing loss ears. The Journal of the Acoustical Society of America, 111(4), 1810–1818.

    Google Scholar 

  • Boothalingam, S., Allan, C., Allen, P., & Purcell, D. (2015). Cochlear delay and medial olivocochlear functioning in children with suspected auditory processing disorder. PLoS ONE, 10(8), e0136906.

    Google Scholar 

  • Botti, T., Sisto, R., Sanjust, F., Moleti, A., & D’Amato, L. (2016). Distortion product otoacoustic emission generation mechanisms and their dependence on stimulus level and primary frequency ratio. The Journal of the Acoustical Society of America, 139(2), 658–673.

    Google Scholar 

  • Brown, A. M. (1987). Acoustic distortion from rodent ears: A comparison of responses from rats, guinea pigs and gerbils. Hearing Research, 31(1), 25–37.

    Google Scholar 

  • Charaziak, K. K., Souza, P., & Siegel, J. H. (2013). Stimulus-frequency otoacoustic emission suppression tuning in humans: Comparison to behavioral tuning. Journal of the Association for Research in Otolaryngology, 14, 843–862.

    Google Scholar 

  • Cheatham, M. A., Goodyear, R. J., Homma, K., Legan, P. K., Korchagina, J., Naskar, S., Siegel, J. H., Dallos, P., Zheng, J., & Richardson, G. P. (2014). Loss of the tectorial membrane protein CEACAM16 enhances spontaneous, stimulus-frequency, and transiently evoked otoacoustic emissions. The Journal of Neuroscience, 34(31), 10325–10338.

    Google Scholar 

  • Choi, Y. S., Lee, S. Y., Parham, K., Neely, S. T., & Kim, D. O. (2008). Stimulus-frequency otoacoustic emission: Measurements in humans and simulations with an active cochlear model. The Journal of the Acoustical Society of America, 123(5), 2651–2669.

    Google Scholar 

  • Dalhoff, E., Turcanu, D., & Gummer, A. W. (2011). Forward and reverse transfer functions of the middle ear based on pressure and velocity DPOAEs with implications for differential hearing diagnosis. Hearing Research, 280, 86–99.

    Google Scholar 

  • Dallos, P. (2008). Cochlear amplification, outer hair cells and prestin. Current Opinion in Neurobiology, 18, 370–376.

    Google Scholar 

  • Dallos, P., & Corey, M. E. (1991). The role of outer hair cell motility in cochlear tuning. Current Opinion in Neurobiology, 1(2), 215–220.

    Google Scholar 

  • de Kleine, E., Wit, H. P., & van Dijk, P. (2000). The behavior of spontaneous otoacoustic emissions during and after postural changes. The Journal of the Acoustical Society of America, 107(6), 3308–3316.

    Google Scholar 

  • Dinis, L., Martin, P., Barral, J., Prost, J., & Joanny, J. (2012). Fluctuation-response theorem for the active noisy oscillator of the hair cell bundle. Physical Review Letters, 109, 160602.

    Google Scholar 

  • Dong, W., & Olson, E. S. (2006). Middle ear forward and reverse transmission in gerbil. Journal of Neurophysiology, 95(5), 2951–2961.

    Google Scholar 

  • Dong, W., & Olson, E. S. (2008). Supporting evidence for reverse cochlear traveling waves. The Journal of the Acoustical Society of America, 123(1), 222–240.

    Google Scholar 

  • Dorn, P. A., Konrad-Martin, D., Neely, S. T., Keefe, D. H., Cyr, E., & Gorga, M. P. (2001). Distortion product otoacoustic emission input/output functions in normal-hearing and hearing-impaired human ears. The Journal of the Acoustical Society of America, 110(6), 3119–3131.

    Google Scholar 

  • Duifhuis, H. (2012). Cochlear Mechanics: Introduction to a Time Domain Analysis of the Nonlinear Cochlea. New York: Springer-Verlag.

    Google Scholar 

  • Duke, T. A. J., & Jülicher, F. (2008). Critical oscillators as active elements in hearing. In G. A. Manley, R. R. Fay, & A. N. Popper (Eds.), Active Processes and Otoacoustic Emissions in Hearing (pp. 63–92). New York: Springer-Verlag.

    Google Scholar 

  • Elliott, S. J., Ku, E. M., & Lineton, B. (2007). A state space model for cochlear mechanics. The Journal of the Acoustical Society of America, 122(5), 2759–2771.

    Google Scholar 

  • Engebretson, A. M., & Eldredge, D. H. (1968). Model for the nonlinear characteristics of cochlear potentials. The Journal of the Acoustical Society of America, 44(2), 548–554.

    Google Scholar 

  • Epp, B., Verhey, J. L., & Mauermann, M. (2010). Modeling cochlear dynamics: Interrelation between cochlea mechanics and psychoacoustics. The Journal of the Acoustical Society of America, 128(4), 1870–1883.

    Google Scholar 

  • Epp, B., Wit, H. P., & van Dijk, P. (2015). Clustering of cochlear oscillations in frequency plateaus as a tool to investigate SOAE generation. In K. D. Karavitaki & D. P. Corey (Eds.), Mechanics of Hearing: Protein to Perception: Proceedings of the 12th International Workshop on the Mechanics of Hearing, Cape Sounio, Greece, June 23–29, 2014 (pp. 090025-1–090025-6). Melville, NY: American Institute of Physics Conference Proceedings 1703.

    Google Scholar 

  • Eustaquio-Martín, A., & Lopez-Poveda, E. A. (2011). Isoresponse versus isoinput estimates of cochlear filter tuning. Journal of the Association for Research in Otolaryngology, 12, 281– 299.

    Google Scholar 

  • Francis, N. A., & Guinan, J. J. (2010). Acoustic stimulation of human medial olivocochlear efferents reduces stimulus-frequency and click-evoked otoacoustic emission delays: Implications for cochlear filter bandwidths. Hearing Research, 267(1–2), 36–45.

    Google Scholar 

  • French, A. P. (1971). Vibrations and Waves. New York: W. W. Norton & Company.

    Google Scholar 

  • Fruth, F., Jülicher, F., & Lindner, B. (2014). An active oscillator model describes the statistics of spontaneous otoacoustic emissions. Biophysical Journal, 107(4), 815–824.

    Google Scholar 

  • Garinis, A., Werner, L., & Abdala, C. (2011). The relationship between MOC reflex and masked threshold. Hearing Research, 282, 128–137.

    Google Scholar 

  • Goldstein, J. L., Baer, T., & Kiang, N. Y.-S. (1971). A theoretical treatment of latency, group delay, and tuning characteristics for auditory nerve responses to clicks and tones. In M. B. Sachs (Ed.), Physiology of the Auditory System, (p. 133–141). Baltimore, MD: National Education Consultants.

    Google Scholar 

  • Goodman, S. S., Fitzpatrick, D. F., Ellison, J. C., Jesteadt, W., & Keefe, D. H. (2009). High-frequency click-evoked otoacoustic emissions and behavioral thresholds in humans. The Journal of the Acoustical Society of America, 125(2), 1014–1032.

    Google Scholar 

  • Gorga, M. P., Neely, S. T., Bergman, B., Beauchaine, K. L., Kaminski, J. R., Peters, J., & Jesteadt, W. (2003). Otoacoustic emissions from normal-hearing and hearing-impaired subjects: Distortion product responses. The Journal of the Acoustical Society of America, 93(4), 2050–2060.

    Google Scholar 

  • Gruhlke, A., Birkholz, C., Neely, S. T., Kopun, J., Tan, H., Jesteadt, W., Schmid, K., & Gorga, M. P. (2012). Distortion-product otoacoustic emission suppression tuning curves in hearing-impaired humans. The Journal of the Acoustical Society of America, 132(5), 3292–3304.

    Google Scholar 

  • Hansen, R., Santurette, S., & Verhulst, S. (2014). Effects of spontaneous otoacoustic emissions on pure-tone frequency difference limens. The Journal of the Acoustical Society of America, 136(6), 3147–3158.

    Google Scholar 

  • He, W., Fridberger, A., Porsov, E., Grosh, K., & Ren, T. (2008). Reverse wave propagation in the cochlea. Proceedings of the National Academy of Sciences of the United States of America, 105(7), 2729–2733.

    Google Scholar 

  • Hudspeth, A. J. (2008). Making an effort to listen: Mechanical amplification in the ear. Neuron, 59(4), 530–545.

    Google Scholar 

  • Janssen, T., & Müller, J. (2008). Otoacoustic emissions as a diagnostic tool in a clinical context. In G. A. Manley, R. R. Fay, & A. N. Popper (Eds.), Active Processes and Otoacoustic Emissions in Hearing (pp. 421–460). New York: Springer-Verlag.

    Google Scholar 

  • Jaramillo, F., & Wiesenfeld, K. (1998). Mechanoelectrical transduction assisted by Brownian motion: A role for noise in the auditory system. Nature Neuroscience, 1(5), 384–388.

    Google Scholar 

  • Johannesma, P. (1980). Narrow band filters and active resonators. In G. van den Brink & F. Bilsen (Eds.), Psychophysical, Physiological and Behavioural Studies in Hearing: Proceedings of the 5th International Symposium on Hearing, Noordwikjkerhout, The Netherlands, April 8–12, 1980 (pp. 62–63). Delft, The Netherlands: Delft University Press.

    Google Scholar 

  • Johnson, T. A., Neely, S. T., Garner, C. A., & Gorga, M. P. (2006). Influence of primary-level and primary-frequency ratios on human distortion product otoacoustic emissions. The Journal of the Acoustical Society of America, 119(1), 418– 428.

    Google Scholar 

  • Joris, P. X., Bergevin, C., Kalluri, R., McLaughlin, M., Michelet, P., van der Heijden, M., & Shera, C. A. (2011). Frequency selectivity in Old-World monkeys corroborates sharp cochlear tuning in humans. Proceedings of the National Academy of Sciences of the United States of America, 108(42), 17516–17520.

    Google Scholar 

  • Kalluri, R., & Shera, C. A. (2001). Distortion-product source unmixing: A test of the two-mechanism model for DPOAE generation. The Journal of the Acoustical Society of America, 109(2), 622–637.

    Google Scholar 

  • Kalluri, R., & Shera, C. A. (2007). Near equivalence of human click-evoked and stimulus-frequency otoacoustic emissions. The Journal of the Acoustical Society of America, 121(4), 2097–2110.

    Google Scholar 

  • Kantz, H., & Schreiber, T. (2004). Nonlinear Time Series Analysis. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Keefe, D. H. (2012). Moments of click-evoked otoacoustic emissions in human ears: Group delay and spread, instantaneous frequency and bandwidth. The Journal of the Acoustical Society of America, 132(5), 3319–3350.

    Google Scholar 

  • Keefe, D., Burns, E., Ling, R., & Laden, B. (1990). Chaotic dynamics of otoacoustic emissions. In P. Dallos, C. D. Geisler, J. W. Matthews, M. A. Ruggero, & C. R. Steele (Eds.), The Mechanics and Biophysics of Hearing (pp. 194–201). New York: Springer-Verlag.

    Google Scholar 

  • Kemp, D. T. (1978). Stimulated acoustic emissions from within the human auditory system. The Journal of the Acoustical Society of America, 64(5), 1386–1391.

    Google Scholar 

  • Kemp, D. T. (1986). Otoacoustic emissions, travelling waves and cochlear mechanisms. Hearing Research, 22, 95–104.

    Google Scholar 

  • Kemp, D. T., Ryan, S., & Bray, P. (1990). A guide to the effective use of otoacoustic emissions. Ear and Hearing, 11(2), 93–105.

    Google Scholar 

  • Kiang, N., Liberman, M., Sewell, W., & Guinan, J. J. (1986). Single unit clues to cochlear mechanisms. Hearing Research, 22, 171–182.

    Google Scholar 

  • Knight, R. D., & Kemp, D. T. (2000). Indications of different distortion product otoacoustic emission mechanisms from a detailed f1,f2 area study. The Journal of the Acoustical Society of America, 107(1), 457.

    Google Scholar 

  • Köppl, C., & Manley, G. A. (1994). Spontaneous otoacoustic emissions in the bobtail lizard. II: Interactions with external tones. Hearing Research, 72, 159–170.

    Google Scholar 

  • Kössl, M., & Boyan, G. S. (1998). Otoacoustic emissions from a nonvertebrate ear. Naturwissenschaften, 85, 124–127.

    Google Scholar 

  • Kozlov, A. S., Andor-Ardó, D., & Hudspeth, A. J. (2012). Anomalous Brownian motion discloses viscoelasticity in the ear’s mechanoelectrical-transduction apparatus. Proceedings of the National Academy of Sciences of the United States of America, 109(7), 2896–2901.

    Google Scholar 

  • Ku, E. M., Elliott, S. J., & Lineton, B. (2008). Statistics of instabilities in a state space model of the human cochlea. The Journal of the Acoustical Society of America, 124(2), 1068–1079.

    Google Scholar 

  • Ku, E. M., Elliott, S. J., & Lineton, B. (2009). Limit cycle oscillations in a nonlinear state space model of the human cochlea. The Journal of the Acoustical Society of America, 126, 739–750.

    Google Scholar 

  • Kuroda, T. (2007). Clinical investigation on spontaneous otoacoustic emission (SOAE) in 447 ears. Auris Nasus Larynx, 34, 29–38.

    Google Scholar 

  • Liberman, M. C., Gao, J., He, D. Z., Wu, X., Jia, S., & Zuo, J. (2002). Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier. Nature, 419, 300–304.

    Google Scholar 

  • Liberman, M. C., Zuo, J., & Guinan, J. J. (2004). Otoacoustic emissions without somatic motility: Can stereocilia mechanics drive the mammalian cochlea? The Journal of the Acoustical Society of America, 116(3), 1649–1655.

    Google Scholar 

  • Liu, Y., & Hatzinakos, D. (2014). Earprint: Transient evoked otoacoustic emission for biometrics. IEEE Transactions on Information Forensics and Security, 9(12), 2291–2301.

    Google Scholar 

  • Long, G. R., & Tubis, A. (1988). Investigations into the nature of the association between threshold microstructure and otoacoustic emissions. Hearing Research, 36(2–3), 125–138.

    Google Scholar 

  • Lonsbury-Martin, B. L., & Martin, G. K. (2001). Evoked otoacoustic emissions as objective screeners for ototoxicity. Seminars in Hearing, 22(4), 377–392.

    Google Scholar 

  • Lonsbury-Martin, B. L., & Martin, G. K. (2008). Otoacoustic emissions: Basic studies in mammalian models. In G. A. Manley, R. R. Fay, & A. N. Popper (Eds.), Active Processes and Otoacoustic Emissions in Hearing (pp. 261–304). New York: Springer-Verlag.

    Google Scholar 

  • Lonsbury-Martin, B. L., Martin, G. K., Probst, R., & Coats, A. C. (1988). Spontaneous otoacoustic emissions in a nonhuman primate. II. Cochlear anatomy. Hearing Research, 33(1), 69–93.

    Google Scholar 

  • López, H. M., Gachelin, J., Douarche, C., Auradou, H., & Clément, E. (2015). Turning bacteria suspensions into superfluids. Physical Review Letters, 115, 028301.

    Google Scholar 

  • Lukashkin, A. N., & Russell, I. J. (1998). A descriptive model of the receptor potential nonlinearities generated by the hair cell mechanoelectrical transducer. The Journal of the Acoustical Society of America, 103(2), 973–980.

    Google Scholar 

  • Lukashkin, A. N., Lukashkina, V. A., & Russell, I. J. (2002). One source for distortion product otoacoustic emissions generated by low- and high-level primaries. The Journal of the Acoustical Society of America, 111(6), 2740–2748.

    Google Scholar 

  • Magnan, P., Avan, P., Dancer, A., Smurzynski, J., & Probst, R. (1997). Reverse middle-ear transfer function in the guinea pig measured with cubic difference tones. Hearing Research, 107(1–2):41–45.

    Google Scholar 

  • Manley, G. A. (1983). Frequency spacing of acoustic emissions: A possible explanation. In W. R. Webster (Ed.), Mechanisms of Hearing (pp. 36–39). Clayton, VIC, Australia: Monash University Press.

    Google Scholar 

  • Manley, G. A. (1997) Diversity in hearing-organ structure and the characteristics of spontaneous otoacoustic emissions in lizards. In E. R. Lewis, G. R. Long, R. F. Lyon, P. M. Narins & C. R. Steele (Eds.), Diversity in Auditory Mechanics (pp. 32–38), Singapore: World Scientific Publishing Co.

    Google Scholar 

  • Manley, G. A. (2000). Cochlear mechanisms from a phylogenetic viewpoint. Proceedings of the National Academy of Sciences of the United States of America, 97(22), 11736–11743.

    Google Scholar 

  • Manley, G. A. (2001). Evidence for an active process and a cochlear amplifier in nonmammals. Journal of Neurophysiology, 86(2), 541–549.

    Google Scholar 

  • Manley, G. A., & Gallo, L. (1997). Otoacoustic emissions, hair cells, and myosin motors. The Journal of the Acoustical Society of America, 102(2), 1049–1055.

    Google Scholar 

  • Manley, G. A., & van Dijk, P. (2016) Frequency selectivity of the human cochlea: Suppression tuning of spontaneous otoacoustic emissions. Hearing Research, 336, 53–62.

    Google Scholar 

  • Manley, G. A., Gallo, L., & Köppl, C. (1996). Spontaneous otoacoustic emissions in two gecko species, Gekko gecko and Eublepharis macularius. The Journal of the Acoustical Society of America, 99:1588–1603.

    Google Scholar 

  • Manley, G. A., Popper, A. N., & Fay, R. R. (2008). Active Processes and Otoacoustic Emissions in Hearing. New York: Springer-Verlag.

    Google Scholar 

  • Martin, G. K., Lonsbury-Marin, B. L., Probst, R., & Coats, A. C. (1988). Spontaneous otoacoustic emissions in a nonhuman primate. I. Basic features and relations to other emissions. Hearing Research, 33(1), 49–68.

    Google Scholar 

  • Mauermann, M., & Kollmeier, B. (2004). Distortion product otoacoustic emission (DPOAE) input/output functions and the influence of the second DPOAE source. The Journal of the Acoustical Society of America, 116(4), 2199–2212.

    Google Scholar 

  • Mauermann, M., Uppenkamp, S., van Hengel, P. W., & Kollmeier, B. (1999). Evidence for the distortion product frequency place as a source of distortion product otoacoustic emission (DPOAE) fine structure in humans. I. Fine structure and higher-order DPOAE as a function of the frequency ratio f2/f1. The Journal of the Acoustical Society of America, 106(6), 3473–3483.

    Google Scholar 

  • May, R. M. (1976). Simple mathematical models with very complicated dynamics. Nature, 261, 459–467.

    Google Scholar 

  • McBrearty, A. R., & Penderis, J. (2011). Evaluation of auditory function in a population of clinically healthy cats using evoked otoacoustic emissions. Journal of Feline Medicine and Surgery, 13(12), 919–926.

    Google Scholar 

  • McBrearty, A., Auckburally, A., Pollock, P. J., & Penderis, J. (2012). Evoked otoacoustic emissions: An alternative test of auditory function in horses. Equine Veterinary Journal, 45, 60–65.

    Google Scholar 

  • McFadden, D., & Pasanen, E. G. (1998). Comparison of the auditory systems of heterosexuals and homosexuals: Click-evoked otoacoustic emissions. Proceedings of the National Academy of Sciences of the United States of America, 95, 2709–2713.

    Google Scholar 

  • Meenderink, S. W., & Narins, P. M. (2006). Stimulus frequency otoacoustic emissions in the northern leopard frog, Rana pipiens pipiens: Implications for inner ear mechanics. Hearing Research, 220, 67–75.

    Google Scholar 

  • Meenderink, S. W., & van der Heijden, M. (2010). Reverse cochlear propagation in the intact cochlea of the gerbil: Evidence for slow traveling waves. Journal of Neurophysiology, 103, 1448–1455.

    Google Scholar 

  • Moleti, A., Al-Maamury, A. M., Bertaccini, D., Botti, T., & Sisto, R. (2013). Generation place of the long- and short-latency components of transient-evoked otoacoustic emissions in a nonlinear cochlear model. The Journal of the Acoustical Society of America, 133(6), 4098–4108.

    Google Scholar 

  • Mom, T., Telischi, F. F., Martin, G. K., & Lonsbury-Martin, B. L. (1999). Measuring the cochlear blood flow and distortion-product otoacoustic emissions during reversible cochlear ischemia: A rabbit model. Hearing Research, 133(1–2), 40–52.

    Google Scholar 

  • Murphy, W. J., Talmadge, C. L., Tubis, A., & Long, G. R. (1995a). Relaxation dynamics of spontaneous otoacoustic emissions perturbed by external tones. I. Response to pulsed single-tone suppressors. The Journal of the Acoustical. Society of America, 97(6), 3702–3710.

    Google Scholar 

  • Murphy, W. J., Tubis, A., Talmadge, C. L., & Long, G. R. (1995b). Relaxation dynamics of spontaneous otoacoustic emissions perturbed by external tones. II. Suppression of interacting emissions. The Journal of the Acoustical. Society of America, 97(6), 3711–3720.

    Google Scholar 

  • Nobili, R., Mammano, F., & Ashmore, J. (1998). How well do we understand the cochlea? Trends in Neuroscience, 21(4), 159–167.

    Google Scholar 

  • Norton, S. J., Gorga, M. P., Widen, J. E., Folsom, R. C., Sininger, Y., Cone-Wesson, B., Vohr, B. R., & Fletcher, K. A. (2000). Identification of neonatal hearing impairment: Summary and recommendations. Ear and Hearing, 21(5), 529–535.

    Google Scholar 

  • Ó Maoiléidigh, D., Nicola, E. M., & Hudspeth, A. J. (2012). The diverse effects of mechanical loading on active hair bundles. Proceedings of the National Academy of Sciences of the United States of America, 109(6), 1943–1948.

    Google Scholar 

  • Owens, J. J., McCoy, M. J., Lonsbury-Martin, B. L., & Martin, G. K. (1992). Influence of otitis media on evoked otoacoustic emissions in children. Seminars in Hearing, 13(1), 53–65.

    Google Scholar 

  • Oxenham, A. J., & Shera, C. A. (2003). Estimates of human cochlear tuning at low levels using forward and simultaneous masking. Journal of the Association for Research in Otolaryngology, 4, 541–554.

    Google Scholar 

  • Palmer, A. R., & Wilson, J. P. (1982). Spontaneous and evoked acoustic emissions in the frog Rana esculenta. The Journal of Physiology, 324, P66.

    Google Scholar 

  • Patuzzi, R. (1996). Cochlear micromechanics and macromechanics. In P. Dallos, A. N. Popper, & R. R. Fay (Eds.), The Cochlea (pp. 186–257). New York: Springer-Verlag.

    Google Scholar 

  • Prieve, B. A., Gorga, M. P., Schmidt, A., Neely, S., Peters, J., Schultes, L., & Jesteadt, W. (1993). Analysis of transient-evoked otoacoustic emissions in normal-hearing and hearing-impaired ears. The Journal of the Acoustical Society of America, 93(6), 3308–3319.

    Google Scholar 

  • Probst, R., Coat, A. C., Martin, G. K., & Lonsbury-Martin, B. L. (1986). Spontaneous, click-, and toneburst-evoked otoacoustic emissions from normal ears. Hearing Research, 21, 261–275.

    Google Scholar 

  • Probst, R., Lonsbury-Martin, B. L., & Martin, G. K. (1991). A review of otoacoustic emissions. The Journal of the Acoustical Society of America, 89(5), 2027–2067.

    Google Scholar 

  • Puria, S. (2003). Measurements of human middle ear forward and reverse acoustics: Implications for otoacoustic emissions. The Journal of the Acoustical Society of America, 113(5), 2773–2789.

    Google Scholar 

  • Rasetshwane, D. M., & Neely, S. T. (2012). Measurements of wide-band cochlear reflectance in humans. Journal of the Association for Research in Otolaryngology, 13, 591–607.

    Google Scholar 

  • Reavis, K. M., McMillan, G., Austin, D., Gallun, F., Fausti, S. A., Gordon, J. S., Helt, W. J., & Konrad-Martin, D. (2011). Distortion-product otoacoustic emission test performance for ototoxicity monitoring. Ear and Hearing, 32(1), 61–74.

    Google Scholar 

  • Reavis, K. M., McMillan, G. P., Dille, M. F., & Konrad-Martin, D. (2015). Meta-analysis of distortion product otoacoustic emission retest variability for serial monitoring of cochlear function in adults. Ear and Hearing, 36(5), 251–260.

    Google Scholar 

  • Rhode, W. S. (1971). Observations of the vibration of the basilar membrane in squirrel monkeys using the Mössbauer technique. The Journal of the Acoustical Society of America, 49, 1218–1231.

    Google Scholar 

  • Robinette, M. S., & Glattke, T. J. (2007). Otoacoustic Emissions: Clinical Applications, 3rd ed. New York: Thieme.

    Google Scholar 

  • Robles, L., & Ruggero, M. A. (2001). Mechanics of the mammalian cochlea. Physiological Reviews, 81(3), 1305–1352.

    Google Scholar 

  • Rosowski, J. J., Peake, W. T., & White, J. R. (1984). Cochlear nonlinearities inferred from two-tone distortion products in the ear canal of the alligator lizard. Hearing Research, 13, 141–158.

    Google Scholar 

  • Ruggero, M. A., & Temchin, A. N. (2005). Unexceptional sharpness of frequency tuning in the human cochlea. Proceedings of the National Academy of Sciences of the United States of America, 102(51), 18614–18619.

    Google Scholar 

  • Schairer, K. S., Fitzpatrick, D., & Keefe, D. H. (2003). Input-output functions for stimulus-frequency otoacoustic emissions in normal-hearing adult ears. The Journal of the Acoustical Society of America, 114(2), 944–966.

    Google Scholar 

  • Shaffer, L. A., Withnell, R. H., Dhar, S., Lilly, D. J., Goodman, S. S., & Harmon, K. M. (2003). Sources and mechanisms of DPOAE generation: Implications for the prediction of auditory sensitivity. Ear and Hearing, 24(5), 367–379.

    Google Scholar 

  • Shera, C. A. (2003). Mammalian spontaneous otoacoustic emissions are amplitude-stabilized cochlear standing waves. The Journal of the Acoustical Society of America, 114(1), 244–262.

    Google Scholar 

  • Shera, C. A. (2015). The spiral staircase: Tonotopic microstructure and cochlear tuning. The Journal of Neuroscience, 35(11), 4683–4690.

    Google Scholar 

  • Shera, C. A., & Zweig, G. (1993). Middle-ear phenomenology: The view from the three windows. The Journal of the Acoustical Society of America, 92(3), 1356–1370.

    Google Scholar 

  • Shera, C. A., & Guinan, J. J. (1999). Evoked otoacoustic emissions arise by two fundamentally different mechanisms: A taxonomy for mammalian OAEs. The Journal of the Acoustical Society of America, 105(2), 782–798.

    Google Scholar 

  • Shera, C. A., & Guinan, J. J. (2003). Stimulus-frequency-emission group delay: A test of coherent reflection filtering and a window on cochlear tuning. The Journal of the Acoustical Society of America, 113(5), 2762–2772.

    Google Scholar 

  • Shera, C. A., & Guinan, J. J. (2008). Mechanisms of mammalian otoacoustic emission. In G. A. Manley, R. R. Fay, & A. N. Popper (Eds.), Active Processes and Otoacoustic Emissions in Hearing (pp. 305–342). New York: Springer-Verlag.

    Google Scholar 

  • Shera, C. A., & Abdala, C. (2012). Otoacoustic emissions: Mechanisms and applications. In K. L. Tremblay & R. F. Burkard (Eds.), Translational Perspectives in Auditory Neurocience: Hearing Across the Life Span-Assessment and Disorders (pp. 123–159). San Diego, CA: Plural Publishing.

    Google Scholar 

  • Shera, C. A., Guinan, J. J., & Oxenham, A. J. (2002). Revised estimates of human cochlear tuning from otoacoustic and behavioral measurements. Proceedings of the National Academy of Sciences of the United States of America, 99(5), 3318–3323.

    Google Scholar 

  • Shera, C. A., Guinan, J. J., & Oxenham, A. J. (2010). Otoacoustic estimation of cochlear tuning: Validation in the chinchilla. Journal of the Association for Research in Otolaryngology, 11, 343–365.

    Google Scholar 

  • Siegel, J. H., Cerka, A. J., Recio-Spinoso, A., Temchin, A. N., van Dijk, P., & Ruggero, M. A. (2005). Delays of stimulus-frequency otoacoustic emissions and cochlear vibrations contradict the theory of coherent reflection filtering. The Journal of the Acoustical Society of America, 118(4), 2434–2443.

    Google Scholar 

  • Sisto, R., Moleti, A., & Shera, C. A. (2015). On the spatial distribution of the reflection sources of different latency components of otoacoustic emissions. The Journal of the Acoustical Society of America, 137(2), 768–776.

    Google Scholar 

  • Stavroulaki, P., Apostolopoulos, N., Dinopoulou, D., Vossinakis, I., Tsakanikos, M., & Douniadakis, D. (1999). Otoacoustic emissions – An approach for monitoring aminoglycoside induced ototoxicity in children. International Journal of Pediatric Otorhinolaryngology, 50, 177–184.

    Google Scholar 

  • Strogatz, S. H. (2014). Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Boulder, CO: Westview Press.

    Google Scholar 

  • Sumner, C. J., Wells, T. T., Bergevin, C., Palmer, A. R., Oxenham, A. J., & Shera, C. A. (2014). Comparing otoacoustic, auditory-nerve, and behavioral estimates of cochlear tuning in the ferret. Association for Research in Otolaryngology Abstracts, 37, PD-017.

    Google Scholar 

  • Talmadge, C., & Tubis, A. (1993). On modeling the connection between spontaneous and evoked otoacoustic emissions. In H. Duifhuis, J. Horst, P. van Dijk, & S. van Netten (Eds.), Biophysics of Hair-Cell Sensory Systems (pp. 25–32). Singapore: World Scientific Press.

    Google Scholar 

  • Talmadge, C. L., Tubis, A., Wit, H. P., & Long, G. R. (1991). Are spontaneous otoacoustic emissions generated by self-sustained cochlear oscillators? The Journal of the Acoustical Society of America, 89(5), 2391–2399.

    Google Scholar 

  • Talmadge, C. L., Long, G. R., Murphy, W. J., & Tubis, A. (1993). New off-line method for detecting spontaneous otoacoustic emissions in human-subjects. Hearing Research, 71, 170–182.

    Google Scholar 

  • Talmadge, C. L., Tubis, A., Long, G. R., & Piskorski, P. (1998). Modeling otoacoustic emission and hearing threshold fine structures. The Journal of the Acoustical Society of America, 104(3), 1517–1543.

    Google Scholar 

  • Telischi, F. F., Roth, J., Stagner, B. B., Lonsbury-Martin, B. L., & Balkany, T. J. (1995). Patterns of evoked otoacoustic emissions associated with acoustic neuromas. Laryngoscope, 105(7), 675–682.

    Google Scholar 

  • Telischi, F. F., Stagner, B., Widick, M. P., Balkany, T. J., & Lonsbury-Martin, B. L. (1998). Distortion-product otoacoustic emission monitoring of cochlear blood flow. Laryngoscope, 108(6), 837–842.

    Google Scholar 

  • van Dijk, P., & Wit, H. P. (1990a). Amplitude and frequency fluctuations of spontaneous otoacoustic emissions. The Journal of the Acoustical Society of America, 88(4), 1779–1793.

    Google Scholar 

  • van Dijk, P., & Wit, H. P. (1990b). Synchronization of spontaneous otoacoustic emissions to a 2f1-f2 distortion product. The Journal of the Acoustical Society of America, 88(2), 850–855.

    Google Scholar 

  • van Dijk, P., & Wit, H. P. (1998). Correlated amplitude fluctuations of spontaneous otoacoustic emissions. The Journal of the Acoustical Society of America, 104(1), 336–343.

    Google Scholar 

  • van Dijk, P., & Long, G. (2015). A comparison of psychometric functions for tone detection at and away from spontaneous otoacoustic emissions. Association for Research in Otolaryngology Abstracts, 38, 480.

    Google Scholar 

  • van Dijk, P., Wit, H. P., & Segenhout, J. M. (1989). Spontaneous otoacoustic emissions in the European edible frog (Rana esculenta): Spectral details and temperature dependence. Hearing Research, 42, 273–282.

    Google Scholar 

  • van Dijk, P., Maat, B., & de Kleine, E. (2011). The effect of static ear canal pressure on human spontaneous otoacoustic emissions: Spectral width as a measure of inter-cochlear oscillation amplitude. Journal of the Association for Research in Otolaryngology, 12, 13–28.

    Google Scholar 

  • Verhulst, S., Dau, T., & Shera, C. A. (2012). Nonlinear time-domain cochlear model for transient stimulation and human otoacoustic emission. The Journal of the Acoustical Society of America, 132(6), 3842–3848.

    Google Scholar 

  • Verhulst, S., Bharadwaj, H. M., Mehraei, G., Shera, C. A., & Shinn-Cunningham, B. G. (2015). Functional modeling of the human auditory brainstem response to broadband stimulation. The Journal of the Acoustical Society of America, 138(3), 1637–1659.

    Google Scholar 

  • Vetešník, A., Turcanu, D., Dalhoff, E., & Gummer, A. W. (2009). Extraction of sources of distortion product otoacoustic emissions by onset-decomposition. Hearing Research, 256, 21–38.

    Google Scholar 

  • Vilfan, A., & Duke, T. (2008). Frequency clustering in spontaneous otoacoustic emissions from a lizard’s ear. Biophysical Journal, 95(10), 4622–4630.

    Google Scholar 

  • Voss, S. E., Horton, N. J., Tabuccki, T. H., Folowosele, F. O., & Shera, C. A. (2006). Posture-induced changes in distortion-product otoacoustic emissions and the potential for noninvasive monitoring of changes in intracranial pressure. Neurocritical Care, 4, 251–257.

    Google Scholar 

  • Walsh, K. (2012). Nonlinear Cochlear Responses Differ During Selective and Inattentive Listening. PhD Thesis, University of Texas at Austin.

    Google Scholar 

  • Weiss, T. F., & Leong, R. (1985). A model for signal transmission in an ear having hair cells with free-standing stereocilia. IV. Mechanoelectric transduction stage. Hearing Research, 20, 157–174.

    Google Scholar 

  • Whitehead, M. L., Kamal, N., Lonsbury-Martin, B. L., & Martin, G. K. (1993). Spontaneous otoacoustic emissions in different racial groups. Scandinavian Audiology, 22(1), 3–10.

    Google Scholar 

  • Whitehead, M. L., Stagner, B., Martin, G. K., & Lonsbury-Martin, B. L. (1996). Visualization of the onset of distortion-product otoacoustic emissions, and measurement of their latency. The Journal of the Acoustical Society of America, 100(3), 1663–1679.

    Google Scholar 

  • Wit, H. P. (1986). Statistical properties of a strong otoacoustic emission. In J. Allen, J. L. Hall, A. E. Hubbard, S. T. Neely, & A. Tubis (Eds.), Peripheral Auditory Mechanisms (pp. 221–228). Berlin Heidelberg: Springer-Verlag.

    Google Scholar 

  • Wit, H. P., & van Dijk, P. (2012). Are human spontaneous otoacoustic emissions generated by a chain of coupled nonlinear oscillators? The Journal of the Acoustical Society of America, 132(2), 918–926.

    Google Scholar 

  • Wit, H. P., van Dijk, P., & Manley, G. A. (2012). A model for the relation between stimulus frequency and spontaneous otoacoustic emissions in lizard papillae. The Journal of the Acoustical Society of America, 132(5), 3273–3279.

    Google Scholar 

  • Zurek, P. M. (1981). Spontaneous narrowband acoustic signals emitted by human ears. The Journal of the Acoustical Society of America, 69(2), 514–523.

    Google Scholar 

  • Zweig, G. (1976). Basilar membrane motion. Cold Spring Harbor Symposium on Quantum Biology, 40, 619–633.

    Google Scholar 

  • Zweig, G. (1991). Finding the impedance of the organ of Corti. The Journal of the Acoustical Society of America, 89(3), 1229–1254.

    Google Scholar 

  • Zweig, G. (2003). Cellular cooperation in cochlear mechanics. In A. W. Gummer (Ed.), Biophysics of the Cochlea: From Molecules to Models (pp. 315–329). Hackensack, NJ: World Scientific Publishing Co.

    Google Scholar 

  • Zweig, G. (2015). Linear cochlear mechanics. The Journal of the Acoustical Society of America, 138(2), 1102–1121.

    Google Scholar 

  • Zweig, G., & Shera, C. A. (1995). The origin of periodicity in the spectrum of evoked otoacoustic emissions. The Journal of the Acoustical Society of America, 98(4), 2018–2047.

    Google Scholar 

  • Zweig, G., Lipes, R., & Pierce, J. R. (1976). The cochlear compromise. The Journal of the Acoustical Society of America, 59, 975–982.

    Google Scholar 

  • Zwicker, E. (1986a). A hardware cochlear nonlinear preprocessing model with active feedback. The Journal of the Acoustical Society of America, 80(1), 146–153.

    Google Scholar 

  • Zwicker, E. (1986b). “Otoacoustic” emissions in a nonlinear cochlear hardware model with feedback. The Journal of the Acoustical Society of America, 80(1), 154–162.

    Google Scholar 

  • Zwicker, E., & Schloth, E. (1984). Interrelation of different otoacoustic emissions. The Journal of the Acoustical Society of America, 75(4), 1148–1154.

    Google Scholar 

Download references

Acknowledgements

Input from Glenis Long, Larissa McKetton, Jung-Hoon Nam, Elizabeth Olson, and Christopher Shera is gratefully acknowledged. Support from the Fields Institute, The Natural Sciences and Engineering Research Council of Canada (NSERC), and Deutsche Forschungsgemeinschaft (DFG) Cluster of Excellence EXC 1077/1 “Hearing4all” is acknowledged.

Compliance with Ethics Requirements Christopher Bergevin declares that he has no conflict of interest. Sarah Verhulst declares that she has no conflict of interest. Pim van Dijk declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Bergevin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bergevin, C., Verhulst, S., van Dijk, P. (2017). Remote Sensing the Cochlea: Otoacoustics. In: Manley, G., Gummer, A., Popper, A., Fay, R. (eds) Understanding the Cochlea. Springer Handbook of Auditory Research, vol 62. Springer, Cham. https://doi.org/10.1007/978-3-319-52073-5_10

Download citation

Publish with us

Policies and ethics