Skip to main content

Major Advances in Cochlear Research

  • Chapter
  • First Online:

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 62))

Abstract

The exquisite spectral and temporal properties of the cochlea are achieved by functional integration of specialized subsystems. Being highly integrated, these components had remained technically inaccessible in vivo for fundamental research and clinical diagnosis without damaging the whole system. In the last three decades, however, great steps forward in our understanding of cochlear function have been made possible by technical developments in biophysics, molecular biology, genetics, and imaging. The following chapters provide comprehensive descriptions of the fundamental principles and experimental results associated with various subsystems and their integration. This chapter highlights the major concepts and findings described in each chapter and links them across chapters, demonstrating the major advances in cochlear research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Clack, J. A., Fay, R. R., & Popper, A. N. (Eds.). (2016). Evolution of the Vertebrate Ear— Evidence from the Fossil Record. New York: Springer International Publishing Switzerland.

    Google Scholar 

  • Cody, A. R., & Johnstone, B. M. (1981). Acoustic trauma: Single neuron basis for the “half-octave shift.” The Journal of the Acoustical Society of America, 70(3), 707–711.

    Google Scholar 

  • Dallos, P., Popper, A. N., & Fay, R. R. (Eds.). (1996). The Cochlea. New York: Springer-Verlag.

    Google Scholar 

  • Dallos, P., Wu, X., Cheatham, M. A., Gao, J., Zheng, J., Anderson, C. T., Jia, S., Wang, X., Cheng, W. H., Sengupta, S., He, D. Z., & Zuo, J. (2008). Prestin-based outer hair cell motility is necessary for mammalian cochlear amplification. Neuron, 58(3), 333–339.

    Google Scholar 

  • Dong, W., & Olson, E. S. (2013). Detection of cochlear amplification and its activation. Biophysical Journal, 105(4), 1067–1078.

    Google Scholar 

  • Ghaffari, R., Aranyosi, A. J., & Freeman, D. M. (2007). Longitudinally propagating traveling waves of the mammalian tectorial membrane. Proceedings of the National Academy of Sciences of the United States of America, 104(42), 16510–16515.

    Google Scholar 

  • Ghaffari, R., Page, S. L., Farrahi, S., Sellon, J. B., & Freeman D. M. (2013). Electrokinetic properties of the mammalian tectorial membrane. Proceedings of the National Academy of Sciences of the United States of America, 110(11), 4279–4284.

    Google Scholar 

  • Kachar, B., Parakkal, M., Kurc, M., Zhao, Y., & Gillespie, P. G. (2000). High-resolution structure of hair cell tip links. Proceedings of the National Academy of Sciences of the United States of America, 97, 13336–13341.

    Google Scholar 

  • Kemp, D. (1978). Stimulated acoustic emissions from within the human auditory system. The Journal of the Acoustical Society of America, 64(5), 1386–1391.

    Google Scholar 

  • Legan, P. K., Lukashkina, V. A., Goodyear, R. J., Kössl, M., Russell, I. J., & Richardson, G. P. (2000). A targeted deletion in α-tectorin reveals that the tectorial membrane is required for the gain and timing of cochlear feedback. Neuron, 28, 273–285.

    Google Scholar 

  • Nilsen, K. E., & Russell, I. J. (2000). The spatial and temporal representation of a tone on the guinea pig basilar membrane. Proceedings of the National Academy of Sciences of the United States of America, 97(22), 11751–11758.

    Google Scholar 

  • Nowotny, M., & Gummer, A. W. (2006). Nanomechanics of the subtectorial space caused by electromechanics of cochlear outer hair cells. Proceedings of the National Academy of Sciences of the United States of America, 103(7), 2120–2125.

    Google Scholar 

  • Ren, T., He, W., & Barr-Gillespie, P. G. (2016). Reverse transduction measured in the living cochlea by low-coherence heterodyne interferometry. Nature Communications, 7, 10282. doi:10.1038/ncomms10282.

  • Rubel, E. W, Popper, A. N., & Fay, R. R. (Eds.). (1998). Development of the Auditory System. New York: Springer-Verlag.

    Google Scholar 

  • Zheng, J., Shen, W., He, D. Z., Long, K. B., Madison, L. D., & Dallos, P. (2000). Prestin is the motor protein of cochlear outer hair cells. Nature, 405(6783), 149–155.

    Google Scholar 

Download references

Compliance with Ethics Requirements

Geoffrey A. Manley declares that he has no conflict of interest.

Anthony W. Gummer declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey A. Manley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Manley, G.A., Gummer, A.W. (2017). Major Advances in Cochlear Research. In: Manley, G., Gummer, A., Popper, A., Fay, R. (eds) Understanding the Cochlea. Springer Handbook of Auditory Research, vol 62. Springer, Cham. https://doi.org/10.1007/978-3-319-52073-5_1

Download citation

Publish with us

Policies and ethics