Advertisement

Functional Role of Physical Exercise and Omega-3 Fatty Acids on Depression and Mood Disorders

  • Stefano Farioli-VecchioliEmail author
  • Debora Cutuli
Chapter
Part of the Contemporary Clinical Neuroscience book series (CCNE)

Abstract

In adulthood, depression is the most common psychiatric disorder and is projected to become the highest cause of disease burden by 2020. Major depression represents a debilitating condition that significantly impairs the function of the central nervous system and severely degrades the quality of life. Several hypotheses regarding the mechanisms that underlie the path physiology of major depression have been investigated. Indeed, major depression has a multifactorial etiology arising from environmental, psychological, genetic, and biological factors. Research over the past decades has clarified that depression is mainly associated with neurotransmitter and neurotrophic factor imbalances, HPA disturbances, deregulated inflammatory pathways, increased oxidative damage, neurogenesis dysfunction, and mitochondrial disturbances. In the recent years, the bulk of the research has concentrated on the study of the neurotransmitters, neurotrophins, neurogenesis, and neuroinflammation as the main factors involved in the pathogenesis of depression. Since recent evidence has suggested that sedentary life and poor diet contribute to the genesis and course of depression (Berk et al. 2013), in this chapter we have taken into account the effects of physical exercise and nutritional factors crucial for the central nervous system, such as omega-3 fatty acids, on depression and mood disorders.

Keywords

Physical activity Exercise Diet Omega-3 fatty acids Depression 

References

  1. Aberg MA, Aberg ND, Palmer TD, Alborn AM, Carlsson-Skwirut C, Bang P, et al. IGF-I has a direct proliferative effect in adult hippocampal progenitor cells. Mol Cell Neurosci. 2003;24:23–40.PubMedCrossRefGoogle Scholar
  2. Aberg ND, Brywe KG, Isgaard J. Aspects of growth hormone and insulin-like growth factor-I related to neuroprotection, regeneration, and functional plasticity in the adult brain. Sci World J. 2006;6:53–80.CrossRefGoogle Scholar
  3. Adachi M, Barrot M, Autry AE, Theobald D, Monteggia LM. Selective loss of brain-derived neurotrophic factor in the dentate gyrus attenuates antidepressant efficacy. Biol Psychiatry. 2007;63:642–9.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Aihara Y, Minai J, Aoyama A, Shimanouchi S. Depressive symptoms and past lifestyle among Japanese elderly people. Community Ment Health J. 2011;47:186–93.PubMedCrossRefGoogle Scholar
  5. Aimone JB, Wiles J, Gage FH. Computational influence of adult neurogenesis on memory encoding. Neuron. 2009;61:187–202.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Aimone JB, Deng W, Gage FH. Adult neurogenesis: integrating theories and separating functions. Trends Cogn Sci. 2010;7:325–37.CrossRefGoogle Scholar
  7. Aimone JB, Deng W, Gage FH. Resolving new memories: a critical look at the dentate gyrus, adult neurogenesis, and pattern separation. Neuron. 2011;70:589–96.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Akbaraly TN, Brunner EJ, Ferrie JE, Marmot MG, Kivimaki M, Singh-Manoux A. Dietary pattern and depressive symptoms in middle age. Br J Psychiatry. 2009;195:408–13.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Appleton KM, Sallis HM, Perry R, Ness AR, Churchill R. Omega-3 fatty acids for depression in adults. Cochrane Database Syst Rev. 2015;11:CD004692.Google Scholar
  10. Appleton KM, Sallis HM, Perry R, Ness AR, Churchill R. ω-3 Fatty acids for major depressive disorder in adults: an abridged Cochrane review. BMJ Open. 2016;6:e010172.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Arango V, Ernsberger P, Marzuk J, Chen S, Tierney H, Stanley M, et al. Autoradiographic demonstration of increased serotonin 5-HT2 and b-adrenergic receptor binding sites in the brain of suicide victims. Arch Gen Psychiatry. 1990;47:1038–47.PubMedCrossRefGoogle Scholar
  12. Ariel A, Li PL, Wang W, Tang WX, Fredman G, Hong S, et al. The docosatriene protectin D1 is produced by TH2 skewing and promotes human T cell apoptosis via lipid raft clustering. J Biol Chem. 2005;280:43079–86.PubMedCrossRefGoogle Scholar
  13. Azevedo Da Silva M, Singh-Manoux A, Brunner EJ, Kaffashian S, Shipley MJ, Kivimäki M, et al. Bidirectional association between physical activity and symptoms of anxiety and depression: the Whitehall II study. Eur J Epidemiol. 2012;27:537–46.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bailey SP, Davis JM, Ahlborn EN. Neuroendocrine and substrate responses to altered brain 5-HT activity during prolonged exercise to fatigue. J Appl Physiol. 1993;74:3006–12.PubMedGoogle Scholar
  15. Bannenberg GL. Resolvins: current understanding and future potential in the control of inflammation. Curr Opin Drug Discov Devel. 2009;12:644–58.PubMedGoogle Scholar
  16. Bazan NG. Neuroprotectin D1 (NPD1): a DHA-derived mediator that protects brain and retina against cell injury-induced oxidative stress. Brain Pathol. 2005;15:159–66.PubMedCrossRefGoogle Scholar
  17. Beautrais AL, Joyce PR, Mulder RT, Fergusson DM, Deavoll BJ, Nightingale SK. Prevalence and comorbidity of mental disorders in persons making serious suicide attempts: a case-control study. Am J Psychiatry. 1996;153:1009–14.PubMedCrossRefGoogle Scholar
  18. Belarbi K, Arellano C, Ferguson R, Jopson T, Rosi S. Chronic neuroinflammation impacts the recruitment of adult-born neurons into behaviorally relevant hippocampal networks. Brain Behav Immun. 2012;26:18–23.PubMedCrossRefGoogle Scholar
  19. Berk M, Jacka F. Preventive strategies in depression: gathering evidence for risk factors and potential interventions. Br J Psychiatry. 2012;201:339–41.PubMedCrossRefGoogle Scholar
  20. Berk M, Sarris J, Coulson CE, Jacka FN. Lifestyle management of unipolar depression. Acta Psychiatr Scand Suppl. 2013;443:38–54.CrossRefGoogle Scholar
  21. Bhatia HS, Agrawal R, Sharma S, Huo YX, Ying Z, Gomez-Pinilla F. Omega-3 fatty acid deficiency during brain maturation reduces neuronal and behavioral plasticity in adulthood. PLoS ONE. 2011;6:e28451.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Biegon A, Israeli M. Regionally selective increased in b-adrenergic receptor density in the brains of suicide victims. Brain Res. 1988;442:199–203.PubMedCrossRefGoogle Scholar
  23. Bigornia SJ, Harris WS, Falcón LM, Ordovás JM, Lai CQ, Tucker KL. The omega-3 index is inversely associated with depressive symptoms among individuals with elevated oxidative stress biomarkers. J Nutr. 2016;146:758–66.PubMedCrossRefGoogle Scholar
  24. Björkholm C, Monteggia LM. BDNF—a key transducer of antidepressant effects. Neuropharmacology. 2016;102:72–9.PubMedCrossRefGoogle Scholar
  25. Bjornebekk A, Mathe AA, Brene S. Isolated flinders sensitive line rats have decreased dopamine D2 receptor mRNA. NeuroReport. 2007;18:1039–43.PubMedCrossRefGoogle Scholar
  26. Bjørnebekk A, Mathé AA, Brené S. The antidepressant effect of running is associated with increased hippocampal cell proliferation. Int J Neuropsychopharmacol. 2005;8:357–68.PubMedCrossRefGoogle Scholar
  27. Blay SL, Andreoli SB, Fillenbaum GG, Gastal FL. Depression morbidity in later life: prevalence and correlates in a developing country. Am J Geriatr Psychiatry. 2007;15:790–9.PubMedCrossRefGoogle Scholar
  28. Bliss TV. Collingridge GL.A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993;361:31–9.PubMedCrossRefGoogle Scholar
  29. Blondeau N, Nguemeni C, Debruyne DN, Piens M, Wu X, Pan H, et al. Subchronic alpha-linolenic acid treatment enhances brain plasticity and exerts an antidepressant effect: a versatile potential therapy for stroke. Neuropsychopharmacology. 2009;34:2548–59.PubMedCrossRefGoogle Scholar
  30. Blumenthal JA, Babyak MA, Doraiswamy PM, Watkins L, Hoffman BM, Barbour KA, et al. Exercise and pharmacotherapy in the treatment of major depressive disorder. Psychosom Med. 2007;69:587–96.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Bowman GL, Silbert LC, Howieson D, Dodge HH, Traber MG, Frei B, et al. Nutrient biomarker patterns, cognitive function, and MRI measures of brain aging. Neurology. 2012;78:241–9.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Bowman GL, Dodge HH, Mattek N, Barbey AK, Silbert LC, Shinto L, et al. Plasma omega-3 PUFA and white matter mediated executive decline in older adults. Front Aging Neurosci. 2013;5:92.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Brezun JM, Daszuta A. Serotonergic reinnervation reverses lesion-induced decreases in PSA-NCAM labeling and proliferation of hippocampal cells in adult rats. Hippocampus. 2000;10:37–46.PubMedCrossRefGoogle Scholar
  34. Brites D, Fernandes A. Neuroinflammation and depression: microglia activation, extracellular microvesicles and microRNA dysregulation. Front Cell Neurosci. 2015;9:476.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Cao D, Kevala K, Kim J, Moon HS, Jun SB, Lovinger D, et al. Docosahexaenoic acid promotes hippocampal neuronal development and synaptic function. J Neurochem. 2009;111:510–21.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Carek PJ, Laibstain SE, Carek SM. Exercise for the treatment of depression and anxiety. Int J Psychiatry Med. 2011;41(1):15–28.PubMedCrossRefGoogle Scholar
  37. Carlezon WAJ, Mague SD, Parow AM, Stoll AL, Cohen BM, Renshaw PF. Antidepressant-like effects of uridine and omega-3 fatty acids are potentiated by combined treatment in rats. Biol Psychiatry. 2005;57:343–50.PubMedCrossRefGoogle Scholar
  38. Carr GV, Lucki I. The role of serotonin receptor subtypes in treating depression: a review of animal studies. Psychopharmacology. 2011;213:265–87.PubMedCrossRefGoogle Scholar
  39. Carter T, Callaghan P, Khalil E, Morres I. The effectiveness of a preferred intensity exercise programme on the mental health outcomes of young people with depression: a sequential mixed methods evaluation. BMC Public Health. 2012;13:187.CrossRefGoogle Scholar
  40. Chalon S. Omega-3 fatty acids and monoamine neurotransmission. Prostaglandins Leukot Essent Fatty Acids. 2006;75:259–69.PubMedCrossRefGoogle Scholar
  41. Chaouloff F, Elghozi JL, Guezennec Y, Laude D. Effects of conditioned running on plasma, liver and brain tryptophan and on brain 5-hydroxytryptamine metabolism of the rat. Br J Pharmacol. 1985;86:33–41.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Charney DS, Price LH, Heninger GR. Desipramine-yohimbine combination treatment of refractory depression. Implications for the beta-adrenergic receptor hypothesis of antidepressant action. Arch Gen Psychiatry. 1986;43:1155–61.PubMedCrossRefGoogle Scholar
  43. Chatzi L, Melaki V, Sarri K, Apostolaki I, Roumeliotaki T, Georgiou V, et al. Dietary patterns during pregnancy and therisk of postpartum depression: the mother-child‘Rhea’cohort in Crete, Greece. Public Health Nutr. 2011;14:1663–70.PubMedCrossRefGoogle Scholar
  44. Chytrova G, Ying Z, Gomez-Pinilla F. Exercise contributes to the effects of DHA dietary supplementation by acting on membrane-related synaptic systems. Brain Res. 2010;1341:32–40.PubMedCrossRefGoogle Scholar
  45. Clelland CD, Choi M, Romberg C, Clemenson GD Jr, Fragniere A, Tyers P, et al. A functional role for adult hippocampal neurogenesis in spatial patternseparation. Science. 2009;325:210–3.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Cockayne NL, Duffy SL, Bonomally R, English A, Amminger PG, Mackinnon A, et al. The beyond ageing project phase 2—a double-blind, selective prevention, randomised, placebo-controlled trial of omega-3 fatty acids and sertraline in an older age cohort at risk for depression: study protocol for a randomized controlled trial. Trials. 2015;16:247.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Connolly KR, Thase ME. Emerging drugs for major depressive disorder. Expert OpinEmerg Drugs. 2012;17:105–26.Google Scholar
  48. Cutuli D, De Bartolo P, Caporali P, Laricchiuta D, Foti F, Ronci M, et al. n-3 polyunsaturated fatty acids supplementation enhances hippocampal functionality in aged mice. Front Aging Neurosci. 2014;6:220.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Cutuli D, Pagani M, Caporali P, Galbusera A, Laricchiuta D, Foti F, et al. Effects of omega-3 fatty acid supplementation on cognitive functions and neural substrates: a voxel-based morphometry study in aged mice. Front Aging Neurosci. 2016;8:38.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Cysneiros RM, Ferrari D, Arida RM, Terra VC, de Almeida AC, Cavalheiro EA, et al. Qualitative analysis of hippocampal plastic changes in rats with epilepsy supplemented with oral omega-3 fatty acids. Epilepsy Behav. 2010;17:33–8.PubMedCrossRefGoogle Scholar
  51. Czeh M, Gressens P, Kaindl AM. The yin and yang of microglia. Dev Neurosci. 2011;33:199–209.PubMedCrossRefGoogle Scholar
  52. Dahl J, Ormstad H, Aass HC, Malt UF, Bendz LT, Sandvik L, et al. The plasma levels of various cytokines are increased during ongoing depression and are reduced to normal levels after recovery. Psychoneuroendocrinology. 2014;45:77–86.PubMedCrossRefGoogle Scholar
  53. Davis PF, Ozias MK, Carlson SE, Reed GA, Winter MK, McCarson KE, et al. Dopamine receptor alterations in female rats with diet-induced decreased brain docosahexaenoic acid (DHA): interactions with reproductive status. Nutr Neurosci. 2010;13:161–9.PubMedPubMedCentralCrossRefGoogle Scholar
  54. De Moor MH, Boomsma DI, Stubbe JH, Willemsen G, de Geus EJ. Testing causality in the association between regular exercise and symptoms of anxiety and depression. Arch Gen Psychiatry. 2008;65:897–905.PubMedCrossRefGoogle Scholar
  55. DeMar JC, Ma K, Bell JM, Igarashi M, Greenstein D, Rapoport SI. One generation of n-3 polyunsaturated fatty acid deprivation increases depression and aggression test scores in rats. J Lipid Res. 2006;47:172–80.PubMedCrossRefGoogle Scholar
  56. Denis I, Potier B, Vancassel S, Heberden C, Lavialle M. Omega-3 fatty acids and brain resistance to ageing and stress: body of evidence and possible mechanisms. Ageing Res Rev. 2013;12:579–94.PubMedCrossRefGoogle Scholar
  57. Deslandes A, Moraes H, Ferreira C, Veiga H, Silveira H, Mouta R, Pompeu FA, Coutinho ES, Laks J. Exercise and mental health: many reasons to move. Neuropsychobiology. 2009;59:191–8.PubMedCrossRefGoogle Scholar
  58. Dishman RK. Brain monoamines, exercise, and behavioral stress: animal models. Med Sci Sports Exerc. 1997;29:63–74.PubMedCrossRefGoogle Scholar
  59. Dishman RK. The new emergence of exercise neurobiology. Scand J Med Sci Sports. 2006;16:379–80.PubMedCrossRefGoogle Scholar
  60. Duman RS. Neural plasticity: consequences of stress and actions of antidepressant treatment. Dialogues Clin Neurosci. 2004;6:157–69.PubMedPubMedCentralGoogle Scholar
  61. Duman RS. Neuronal damage and protection in the pathophysiology and treatment of psychiatric illness: stress and depression. Dialogues Clin Neurosci. 2009;11:239–55.PubMedPubMedCentralGoogle Scholar
  62. Duman RS, Monteggia LM. A neurotrophic model for stress-related mood disorders. Biol Psychiatry. 2006;59:1116–27.PubMedCrossRefGoogle Scholar
  63. Duric V, McCarson KE. Hippocampal neurokinin-1 receptor and brain-derived neurotrophic factor gene expression is decreased in rat models of pain and stress. Neuroscience. 2005;133:999–1006.PubMedCrossRefGoogle Scholar
  64. Dyall SC, Michael GJ, Michael-Titus AT. Omega-3 fatty acids reverse age-related decreases in nuclear receptors and increase neurogenesis in old rats. J Neurosci Res. 2010;88:2091–102.PubMedCrossRefGoogle Scholar
  65. Dyall SC, Mandhair HK, Fincham RE, Kerr DM, Roche M, Molina-Holgado F. Distinctive effects of eicosapentaenoic and docosahexaenoic acids in regulating neural stem cell fate are mediated via endocannabinoid signalling pathways. Neuropharmacology. 2016;107:387–95.PubMedCrossRefGoogle Scholar
  66. Eadie BD, Redila VA, Christie BR. Voluntary exercise alters the cytoarchitecture of the adult dentate gyrus by increasing cellular proliferation, dendritic complexity, and spine density. J Comp Neurol. 2005;486:39–47.PubMedCrossRefGoogle Scholar
  67. Ekdahl CT, Claasen JH, Bonde S, Kokaia Z, Lindvall O. Inflammation is detrimental for neurogenesis in adult brain. Proc Natl Acad Sci U S A. 2003;100:13632–7.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Erickson KI, Miller DL, Roecklein KA. The aging hippocampus: interactions between exercise, depression, and BDNF. Neuroscientist. 2012;18:82–97.PubMedCrossRefGoogle Scholar
  69. Ernst C, Olson AK, Pinel JP, Lam RW, Christie BR. Antidepressant effects of exercise: evidence for an adult-neurogenesis hypothesis? J Psychiatry Neurosci. 2006;31:84–92.PubMedPubMedCentralGoogle Scholar
  70. Erny D, Hrabe De Angelis AL, Jaitin D, Wieghofer P, Staszewski O, David E, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci. 2015;18:965–77.PubMedCrossRefGoogle Scholar
  71. Eyre H, Baune BT. Neuroplastic changes in depression: a role for the immune system. Psychoneuroendocrinology. 2012;37:1397–416.PubMedCrossRefGoogle Scholar
  72. Farioli-Vecchioli S, Saraulli D, Costanzi M, Pacioni S, Cinà I, Aceti M, et al. The timing of differentiation of adult hippocampal neurons is crucial for spatial memory. PLoS Biol. 2008;6:e246.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Farooqui AA, Horrocks LA, Farooqui T. Modulation of inflammation in brain: a matter of fat. J Neurochem. 2007;101:577–99.PubMedCrossRefGoogle Scholar
  74. Fedorova I, Salem N. Omega-3 fatty acids and rodent behavior. Prostaglandins Leukot Essent Fatty Acids. 2006;75:271–89.PubMedCrossRefGoogle Scholar
  75. Fedorova I, Hussein N, Baumann MH, Di Martino C, Salem N. An n-3 fatty acid deficiency impairs rat spatial learning in the Barnes maze. Behav Neurosci. 2009;123:196–205.PubMedCrossRefGoogle Scholar
  76. Foley TE, Fleshner M. Neuroplasticity of dopamine circuits after exercise: implications for central fatigue. Neuromolecular Med. 2008;10:67–80.PubMedCrossRefGoogle Scholar
  77. Fujioka H, Akema T. Lipopolysaccharide acutely inhibits proliferation of neural precursor cells in the dentate gyrus in adult rats. Brain Res. 2010;1352:35–42.PubMedCrossRefGoogle Scholar
  78. Ganança L, Oquendo MA, Tyrka AR, Cisneros-Trujillo S, Mann JJ, Sublette ME. The role of cytokines in the pathophysiology of suicidal behavior. Psychoneuroendocrinology. 2016;63:296–310.PubMedCrossRefGoogle Scholar
  79. Ge S, Goh EL, Sailor KA, Kitabatake Y, Ming GL, Song H. GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature. 2006;439:589–93.PubMedCrossRefGoogle Scholar
  80. Gebara E, Sultan S, Kocher-Braissant J, Toni N. Adult hippocampal neurogenesis inversely correlates with microglia in conditions of voluntary running and aging. Front Neurosci. 2013;20:145.Google Scholar
  81. Gibbons TE, Pence BD, Petr G, Ossyra JM, Mach HC, Bhattacharya TK, et al. Voluntary wheel running, but not a diet containing (-)-epigallocatechin-3-gallate and β-alanine, improves learning, memory and hippocampal neurogenesis in aged mice. Behav Brain Res. 2014;272:131–40.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Gilbert K, Bernier J, Godbout R, Rousseau G. Resolvin D1, a metabolite of omega-3 polyunsaturated fatty acid, decreases post-myocardial infarct depression. Mar Drugs. 2014;12:5396–407.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Gomez-Pinilla F. The influences of diet and exercise on mental health through hormesis. Ageing Res Rev. 2008;7:49–62.PubMedCrossRefGoogle Scholar
  84. Gomez-Pinilla F. Collaborative effects of diet and exercise on cognitive enhancement. Nutr Health. 2011;20:165–9.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Gomez-Pinilla F, Gomez AG. The influence of dietary factors in central nervous system plasticity and injury recovery. PM R. 2011;3:S111–6.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Gómez-Pinilla F, Dao L, So V. Physical exercise induces FGF-2 and its mRNA in the hippocampus. Brain Res. 1997;764:1–8.PubMedCrossRefGoogle Scholar
  87. Gómez-Pinilla F, Ying Z, Opazo P, Roy RR, Edgerton VR. Differential regulation by exercise of BDNF and NT-3 in rat spinal cord and skeletal muscle. Eur J Neurosci. 2001;13:1078–84.PubMedCrossRefGoogle Scholar
  88. Grayson DS, Kroenke CD, Neuringer M, DA Fair J. Dietary omega-3 fatty acids modulate large-scale systems organization in the rhesus macaque brain. Neuroscience. 2014;34:2065–74.PubMedPubMedCentralGoogle Scholar
  89. Greiner RS, Moriguchi T, Slotnick BM, Hutton A, Salem N. Olfactory discrimination deficits in n-3 fatty acid-deficient rats. Physiol Behav. 2001;72:379–85.PubMedCrossRefGoogle Scholar
  90. Griffin ÉW, Mullally S, Foley C, Warmington SA, O’Mara SM, Kelly AM. Aerobic exercise improves hippocampal function and increases BDNF in the serum of young adult males. Physiol Behav. 2011;104:934–41.PubMedCrossRefGoogle Scholar
  91. Haag M. Essential fatty acids and the brain. Can J Psychiatry. 2003;48:195–203.PubMedGoogle Scholar
  92. Hamazaki K, Itomura M, Huan M, Nishizawa H, Sawazaki S, Tanouchi M, et al. Effect of omega-3 fatty acid-containing phospholipids on blood catecholamine concentrations in healthy volunteers: a randomized, placebo-controlled, double-blind trial. Nutrition. 2005;21:705–10.PubMedCrossRefGoogle Scholar
  93. Hannestad J, Dellagioia N, Gallezot JD, Lim K, Nabulsi N, Esterlis I, et al. The neuroinflammation marker translocator protein is not elevated in individuals with mild-to-moderate depression: a [(1)(1)C]PBR28 PET study. Brain Behav Immun. 2013;33:131–8.PubMedPubMedCentralCrossRefGoogle Scholar
  94. He C, Qu X, Cui L, Wang J, Kang JX. Improved spatial learning performance of fat-1 mice is associated with enhanced neurogenesis and neuritogenesis by docosahexaenoic acid. Proc Natl Acad Sci U S A. 2009;106:11370–5.PubMedPubMedCentralCrossRefGoogle Scholar
  95. Hibbeln JR, Linnoila M, Umhau JC, Rawlings R, George DT, Salem N. Essential fatty acids predict metabolites of serotonin and dopamine in cerebrospinal fluid among healthy control subjects, and early- and late onset alcoholics. Biol Psychiatry. 1998;44:235–42.PubMedCrossRefGoogle Scholar
  96. Hichami A, Datiche F, Ullah S, Liénard F, Chardigny JM, Cattarelli M, et al. Olfactory discrimination ability and brain expression of c-fos, Gir and Glut1 mRNA are altered in n-3 fatty acid-depleted rats. Behav Brain Res. 2007;184:1–10.PubMedCrossRefGoogle Scholar
  97. Hidaka BH. Depression as a disease of modernity: explanations for increasing prevalence. J Affect Disord. 2012;140:205–14.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Hooijmans CR, Pasker-de Jong PC, de Vries RB, Ritskes-Hoitinga M. The effects of long-term omega-3 fatty acid supplementation on cognition and Alzheimer’s pathology in animal models of Alzheimer’s disease: a systematic review and meta-analysis. J Alzheimers Dis. 2012;28:191–209.Google Scholar
  99. Hoshaw BA, Malberg JE, Lucki I. Central administration of IGF-I and BDNF leads to long-lasting antidepressant-like effects. Brain Res. 2005;1037:204–8. (Int J Psychiatry Med. 2011;41:15–28).Google Scholar
  100. Huang WL, King VR, Curran OE, Dyall SC, Ward RE, Lal N, et al. A combination of intravenous and dietary docosahexaenoic acid significantly improves outcome after spinal cord injury. Brain. 2007;130:3004–19.PubMedCrossRefGoogle Scholar
  101. Hutton CP, Déry N, Rosa E, Lemon JA, Rollo CD, Boreham DR, et al. Synergistic effects of diet and exercise on hippocampal function in chronically stressed mice. Neuroscience. 2015;308:180–93.PubMedCrossRefGoogle Scholar
  102. Jacka FN, Berk M. Depression, diet and exercise. Med J Aust. 2013;199:S21–3.PubMedGoogle Scholar
  103. Jacka FN, Kremer PJ, Leslie E, Berk M, Patton G, Toumbourou JW, et al. Associations between diet quality and depressed mood in adolescents: results from the healthy neighbourhoods study. Aust NZJ Psychiatry. 2010a;44:435–42.CrossRefGoogle Scholar
  104. Jacka FN, Pasco JA, Mykletun A, Williams LJ, Hodge AM, O’Reilly SL, et al. Association of Western and traditional diets with depression and anxiety in women. Am J Psychiatry. 2010b;167:305–11.PubMedCrossRefGoogle Scholar
  105. Jacka FN, Pasco JA, Mykletun A, Williams LJ, Nicholson GC, Kotowicz MA, et al. Diet quality in bipolar disorder in a population-based sample of women. J Affect Disord. 2011a;129:332–7.PubMedCrossRefGoogle Scholar
  106. Jacka FN, Pasco JA, Williams LJ, Leslie ER, Dodd S, Nicholson GC, et al. Lower levels of physical activity in childhood associated with adult depression. J Sci Med Sport. 2011b;14:222–6.PubMedCrossRefGoogle Scholar
  107. Jacka FN, Mykletun A, Berk M. Moving towards a population health approach to the primary prevention of common mental disorders. BMC Med. 2012;10:149.PubMedPubMedCentralCrossRefGoogle Scholar
  108. James MJ, Gibson RA, Cleland LG. Dietary polyunsaturated fatty acids and inflammatory mediator production. Am J Clin Nutr. 2000;71:343s–8s.PubMedGoogle Scholar
  109. Johnston ST, Shtrahman M, Parylak S, Gonçalves JT, Gage FH. Paradox of pattern separation and adult neurogenesis: a dual role for new neurons balancing memory resolution and robustness. Neurobiol Learn Mem. 2015;S1074:000193–8.Google Scholar
  110. Joseph MS, Ying Z, Zhuang Y, Zhong H, Wu A, Bhatia HS, et al. Effects of diet and/or exercise in enhancing spinal cord sensorimotor learning. PLoS ONE. 2012;7:e41288.PubMedPubMedCentralCrossRefGoogle Scholar
  111. Kant AK. Consumption of energy-dense, nutrient-poor foods by adult Americans: nutritional and health implications. The third National Health and Nutrition Examination Survey, 1988–1994. Am J Clin Nutr. 2000;72:929–36.PubMedGoogle Scholar
  112. Kee N, Teixeira CM, Wang AH, Frankland PW. Preferential incorporation of adult-generated granule cells into spatial memory networks in the dentate gyrus. Nat Neurosci. 2007;3:355–62.CrossRefGoogle Scholar
  113. Kempermann G, Jessberger S, Steiner B, Kronenberg G. Milestones of neuronal development in the adult hippocampus. Trends Neurosci. 2004;27:447–52.PubMedCrossRefGoogle Scholar
  114. Kettenmann H, Hanisch UK, Noda M, Verkhratsky A. Physiology of microglia. Physiol Rev. 2011;91:461–553.PubMedCrossRefGoogle Scholar
  115. Kiecolt-Glaser JK, Belury MA, Andridge R, Malarkey WB, Hwang BS, Glaser R. Omega-3 supplementation lowers inflammation in healthy middle-aged and older adults: a randomized controlled trial. Brain Behav Immun. 2012;26:988–95.PubMedPubMedCentralCrossRefGoogle Scholar
  116. Kiecolt-Glaser JK, Derry HM, Fagundes CP. Inflammation: depression fans the flames and feasts on the heat. Am J Psychiatry. 2015;172:1075–91.PubMedCrossRefGoogle Scholar
  117. Kohman RA, Rhodes JS. Neurogenesis, inflammation and behavior. Brain Behav Immun. 2013;27:22–32.PubMedCrossRefGoogle Scholar
  118. Kohman RA, DeYoung EK, Bhattacharya TK, Peterson LN, Rhodes JS. Wheel running attenuates microglia proliferation and increases expression of a proneurogenic phenotype in the hippocampus of aged mice. Brain Behav Immun. 2012;26:803–10.PubMedCrossRefGoogle Scholar
  119. Kozorovitskiy Y, Gould E. Dominance hierarchy influences adult neurogenesis in the dentate gyrus. J Neurosci. 2004;24:6755–9.PubMedCrossRefGoogle Scholar
  120. Kram ML, Kramer GL, Ronan PJ, Steciuk M, Petty F. Dopamine receptors and learned helplessness in the rat: an autoradiographic study. Prog Neuropsychopharmacol Biol Psychiatry. 2002;26:639–45.PubMedCrossRefGoogle Scholar
  121. Krogh J, Videbech P, Renvillard SG, Garde AH, Jørgensen MB, Nordentoft M. Cognition and HPA axis reactivity in mildly to moderately depressed outpatients: a case-control study. Nord J Psychiatry. 2012;66:414–21.PubMedCrossRefGoogle Scholar
  122. Kuczmarski MF, Cremer Sees A, Hotchkiss L, Cotugna N, Evans MK, Zonderman AB. Higher healthy eating index-2005 scores associated with reduced symptoms of depression in an urban population: findings from the healthy aging in neighborhoods of diversity across the life span (HANDLS) study. J Am Diet Assoc. 2010;110:383–9.Google Scholar
  123. Lambert HW, Weiss ER, Lauder JM. Activation of 5-HT receptors that stimulate the adenylyl cyclase pathway positively regulates IGF-I in cultured craniofacial mesenchymal cells. Dev Neurosci. 2001;23:70–7.PubMedCrossRefGoogle Scholar
  124. Laplagne DA, Espósito MS, Piatti VC, Morgenstern NA, Zhao C, van Praag H, Gage FH, et al. Functional convergence of neurons generated in the developing and adult hippocampus. PLoS Biol. 2006;12:e409.CrossRefGoogle Scholar
  125. Laplagne DA, Kamienkowski JE, Espósito MS, Piatti VC, Zhao C, Gage FH, et al. Similar GABAergic inputs in dentate granule cells born during embryonic and adult neurogenesis. Eur J Neurosci. 2007;25:2973–81.PubMedCrossRefGoogle Scholar
  126. Laske C, Banschbach S, Stransky E, Bosch S, Straten G, Machann J, et al. Exercise-induced normalization of decreased BDNF serum concentration in elderly women with remitted major depression. Int J Neuropsychopharmacol. 2010;13:595–602.PubMedCrossRefGoogle Scholar
  127. Lattari E, Arias-Carrión O, Monteiro-Junior RS, Mello Portugal EM, Paes F, Menéndez-González M, Silva AC, Nardi AE, Machado S. Implications of movement-related cortical potential for understanding neural adaptations in muscle strength tasks. Int Arch Med. 2014;7:9.Google Scholar
  128. Lee BH, Kim YK. The roles of BDNF in the pathophysiology of major depression and in antidepressant treatment. Psychiatry Investig. 2010;7:231–5.PubMedPubMedCentralCrossRefGoogle Scholar
  129. Leonard B, Maes M. Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neurosci Biobehav Rev. 2012;36:764–85.PubMedCrossRefGoogle Scholar
  130. Levant B. N-3 (omega-3) polyunsaturated Fatty acids in the pathophysiology and treatment of depression: pre-clinical evidence. CNS Neurol Disord: Drug Targets. 2013;12:450–9.CrossRefGoogle Scholar
  131. Levant B, Ozias MK, Davis PF, Winter M, Russell KL, Carlson SE, et al. Decreased brain docosahexaenoic acid content produces neurobiological effects associated with depression: interactions with reproductive status in female rats. Psychoneuroendocrinology. 2008;33:1279–92.PubMedPubMedCentralCrossRefGoogle Scholar
  132. Littlefield AM, Setti SE, Priester C, Kohman RA. Voluntary exercise attenuates LPS-induced reductions in neurogenesis and increases microglia expression of a proneurogenic phenotype in aged mice. J Neuroinflammation. 2015;12:138.PubMedPubMedCentralCrossRefGoogle Scholar
  133. Lopresti AL, Hood SD, Drummond PD. A review of lifestyle factors that contribute to important pathways associated with major depression: diet, sleep and exercise. J Affect Disord. 2013;148(1):12–27.PubMedCrossRefGoogle Scholar
  134. Lucassen PJ, Meerlo P, Naylor AS, van Dam AM, Dayer AG, Fuchs E, et al. Regulation of adult neurogenesis by stress, sleep disruption, exercise and inflammation: implications for depression and antidepressant action. Eur Neuropsychopharmacol. 2010;20:1–17.PubMedCrossRefGoogle Scholar
  135. Luchtman DW, Song C. Cognitive enhancement by omega-3 fatty acids from child-hood to old age: findings from animal and clinical studies. Neuropharmacology. 2013;64:550–65.PubMedCrossRefGoogle Scholar
  136. Lynch AM, Murphy KJ, Deighan BF, O’Reilly JA, Gun’ko YK, Cowley TR, et al. The impact of glial activation in the aging brain. Aging Dis. 2010;1:262–78.PubMedPubMedCentralGoogle Scholar
  137. Malberg JE. Implications of adult hippocampal neurogenesis in antidepressant action. J Psychiatry Neurosci. 2004;29:196–205.PubMedPubMedCentralGoogle Scholar
  138. Maletic V, Robinson M, Oakes T, Iyengar S, Ball SG, Russell J. Neurobiology of depression: an integrated view of key findings. Int J Clin Pract. 2007;61:2030–40.PubMedPubMedCentralCrossRefGoogle Scholar
  139. Mamplekou E, Bountziouka V, Psaltopoulou T, Zeimbekis A, Tsakoundakis N, Papaerakleous N, et al. Urban environment, physical inactivity and unhealthy dietary habits correlate to depression among elderly living in eastern Mediterranean islands: the MEDIS (MEDiterranean ISlands Elderly) study. J Nutr Health Aging. 2010;14:449–55.PubMedCrossRefGoogle Scholar
  140. Markakis EA. Gage FH Adult-generated neurons in the dentate gyrus send axonal projections to field CA3 and are surrounded by synaptic vesicles. J Comp Neurol. 1999;406:449–60.PubMedCrossRefGoogle Scholar
  141. Marriott BP, Hibbeln JR, Killeen TK, Magruder KM, Holes-Lewis K, Tolliver BK, et al. Design and methods for the better resiliency among veterans and non-veterans with omega-3’s (BRAVO) study: a double blind, placebo-controlled trial of omega-3 fatty acid supplementation among adult individuals at risk of suicide. Contemp Clin Trials. 2016;47:325–33.PubMedCrossRefGoogle Scholar
  142. Maruszak A, Pilarski A, Murphy T, Branch N, Thuret S. Hippocampal neurogenesis in Alzheimer’s disease: is there a role for dietary modulation? J Alzheimers Dis. 2014;38:11–38.PubMedGoogle Scholar
  143. Maslanik T, Mahaffey L, Tannura K, Beninson L, Greenwood BN, Fleshner M. The inflammasome and danger associated molecular patterns (DAMPs) are implicated in cytokine and chemokine responses following stressor exposure. Brain Behav Immun. 2013;28:54–62.PubMedCrossRefGoogle Scholar
  144. Matthes S, Mosienko V, Bashammakh S, Alenina N, Bader M. Tryptophan hydroxylase as novel target for the treatment of depressive disorders. Pharmacology. 2010;85:95–109.PubMedCrossRefGoogle Scholar
  145. Mattson MP, Maudsley S, Martin B. BDNF and 5-HT: a dynamic duo in age-related neuronal plasticity and neurodegenerative disorders. Trends Neurosci. 2004;27:589–94.PubMedCrossRefGoogle Scholar
  146. McNamara RK. DHA deficiency and prefrontal cortex neuropathology in recurrent affective disorders. J Nutr. 2010;140:864–8.PubMedPubMedCentralCrossRefGoogle Scholar
  147. McNamara RK. Mitigation of inflammation-induced mood dysregulation by long-chain omega-3 fatty acids. J Am Coll Nutr. 2015;34:48–55.PubMedPubMedCentralCrossRefGoogle Scholar
  148. McNamara RK, Hahn CG, Jandacek R, Rider T, Tso P, Stanford KE, et al. Selective deficits in the omega-3 fatty acid docosahexaenoic acid in the postmortem orbitofrontal cortex of patients with major depressive disorder. Biol Psychiatry. 2007;62:17–24.PubMedCrossRefGoogle Scholar
  149. McNamara RK, Able J, Liu Y, Jandacek R, Rider T, Tso P, et al. Omega-3 fatty acid deficiency during perinatal development increases serotonin turnover in the prefrontal cortex and decreases midbrain tryptophan hydroxylase-2 expression in adult female rats: dissociation from estrogenic effects. J Psychiatr Res. 2009;43:656–63.PubMedCrossRefGoogle Scholar
  150. McNamara RK, Jandacek R, Rider T, Tso P, Cole-Strauss A, Lipton JW. Omega-3 fatty acid deficiency increases constitutive proinflammatory cytokine production in rats: relationship with central serotonin turnover. Prostaglandins Leukot Essent Fatty Acids. 2010;83:185–91.PubMedPubMedCentralCrossRefGoogle Scholar
  151. McNamara RK, Vannest JJ, Valentine CJ. Role of perinatal long-chain omega-3 fatty acids in cortical circuit maturation: mechanisms and implications for psychopathology. World J Psychiatry. 2015;5:15–34.PubMedPubMedCentralGoogle Scholar
  152. Mead GE, Morley W, Campbell P, Greig CA, McMurdo M, Lawlor DA. Exercise for depression. Cochrane Database Syst Rev. 2009;8:CD004366.Google Scholar
  153. Melancon MO, Lorrain D, Dionne IJ. Exercise increases tryptophan availability to the brain in older men age 57-70 years. Med Sci Sports Exerc. 2012;44:881–7.PubMedCrossRefGoogle Scholar
  154. Meller R, Babity JM, Grahame-Smith DG. 5-HT2A receptor activation leads to increased BDNF mRNA expression in C6 glioma cells. Neuromolecular Med. 2002;1:197–205.PubMedCrossRefGoogle Scholar
  155. Mervaala E, Föhr J, Könönen M, Valkonen-Korhonen M, Vainio P, Partanen K, et al. Quantitative MRI of the hippocampus and amygdala in severe depression. Psychol Med. 2000;30:117–25.PubMedCrossRefGoogle Scholar
  156. Meyer JH, Ginovart N, Boovariwala A, Sagrati S, Hussey D, Garcia A, et al. Elevated monoamineoxidase a levels in the brain: an explanation for the monoamine imbalance of major depression. Arch Gen Psychiatry. 2006;63:1209–16.PubMedCrossRefGoogle Scholar
  157. Miller AH, Maletic V, Raison CL. Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry. 2009;65:732–41.PubMedPubMedCentralCrossRefGoogle Scholar
  158. Mills JD, Hadley K, Bailes JE. Dietary supplementation with the omega-3 fatty acid docosahexaenoic acid in traumatic brain injury. Neurosurgery. 2011;68:474–81.PubMedCrossRefGoogle Scholar
  159. Mirescu C, Peters JD, Noiman L, Gould E. Sleep deprivation inhibits adult neurogenesis in the hippocampus by elevating glucocorticoids. Proc Natl Acad Sci U S A. 2006;103:19170–5.PubMedPubMedCentralCrossRefGoogle Scholar
  160. Mischoulon D. The impact of omega-3 fatty acids on depressive disorders and suicidality: can we reconcile 2 studies with seemingly contradictory results? J Clin Psychiatry. 2011;72:1574–6.PubMedPubMedCentralCrossRefGoogle Scholar
  161. Moriguchi T, Greiner RS, Salem N. Behavioral deficits associated with dietary induction of decreased brain docosahexaenoic acid concentration. J Neurochem. 2000;75:2563–73.PubMedCrossRefGoogle Scholar
  162. Moussavi S, Chatterji S, Verdes E, Tandon A, Patel V, Ustun B. Depression, chronic diseases, and decrements in health: results from the World Health Surveys. Lancet. 2007;370:851–8.PubMedCrossRefGoogle Scholar
  163. Murphy T, Dias GP, Thuret S. Effects of diet on brain plasticity in animal and human studies: mind the gap. Neural Plast. 2014;2014:563160.PubMedPubMedCentralCrossRefGoogle Scholar
  164. Nanri A, Kimura Y, Matsushita Y, Ohta M, Sato M, Mishima N, et al. Dietary patterns and depressive symptoms among Japanese men and women. Eur J Clin Nutr. 2010;64:832–9.PubMedCrossRefGoogle Scholar
  165. Neeper SA, Gómez-Pinilla F, Choi J, Cotman CW. Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Res. 1996;726:49–56.PubMedCrossRefGoogle Scholar
  166. Nizzo MC, Tegos S, Gallamini A, Toffano G, Polleri A, Massarotti M. Brain cortex phospholipids liposomes effects on CSF HVA, 5-HIAA and on prolactin and somatotropin secretion in man. J Neural Transm. 1978;43:93–102.PubMedCrossRefGoogle Scholar
  167. Oddy WH, Robinson M, Ambrosini GL, O’Sullivan TA, de Klerk NH, Beilin LJ, et al. The association between dietary patterns and mental health in early adolescence. Prev Med. 2009;49:39–44.PubMedCrossRefGoogle Scholar
  168. Orihuela R, McPherson CA, Harry GJ. Microglial M1/M2 polarization and metabolic states. Br J Pharmacol. 2016;173:649–65.PubMedCrossRefGoogle Scholar
  169. Overby N, Hoigaard R. Diet and behavioral problems at school in Norwegian adolescents. Adv Food Nutr Res. 2012;56:1142.Google Scholar
  170. Papp M, Klimek V, Willner P. Parallel changes in dopamine D2 receptor binding in limbic forebrain associated with chronic mild stressinduced anhedonia and its reversal by imipramine. Psychopharmacology. 1994;115:441–6.PubMedCrossRefGoogle Scholar
  171. Park JY, You JS, Chang KJ. Dietary taurine intake, nutrients intake, dietaryhabits and life stress by depression in Korean female college students: a case–control study. J Biomed Sci. 2010;17:S40.PubMedPubMedCentralCrossRefGoogle Scholar
  172. Park Y, Moon HJ, Kim SH. N-3 polyunsaturated fatty acid consumption produces neurobiological effects associated with prevention of depression in rats after the forced swimming test. J Nutr Biochem. 2012;23:924–8.PubMedCrossRefGoogle Scholar
  173. Pasco JA, Williams LJ, Jacka FN, Henry MJ, Coulson CE, Brennan SL, et al. Habitual physical activity and the risk for depressive and anxiety disorders among older men and women. Int Psychogeriatr. 2011;23:292–8.PubMedCrossRefGoogle Scholar
  174. Pittet YK, Berger MM, Pluess TT, Voirol P, Revelly JP, Tappy L, et al. Blunting the response to endotoxin in healthy subjects: effects of various doses of intravenousfish oil. Intensive Care Med. 2010;36:289–95.PubMedCrossRefGoogle Scholar
  175. Pluess TT, Hayoz D, Berger MM, Tappy L, Revelly JP, Michaeli B, et al. Intravenousfish oil blunts the physiological response to endotoxin in healthy subjects. Intensive Care Med. 2007;33:789–97.PubMedCrossRefGoogle Scholar
  176. Pons S, Torres-Aleman I. Basic fibroblast growth factor modulates insulin-like growth factor-I, its receptor, and its binding proteins in hypothalamic cell cultures. Endocrinology. 1992;131:2271–8.PubMedGoogle Scholar
  177. Pottala JV, Yaffe K, Robinson JG, Espeland MA, Wallace R, Harris WS. Higher RBC EPA + DHA corresponds with larger total brain and hippocampal volumes: WHIMS-MRI study. Neurology. 2014;82:435–42.PubMedPubMedCentralCrossRefGoogle Scholar
  178. Puri BK, Counsell SJ, Hamilton G, Richardson AJ, Horrobin DF. Eicosapentaenoic acid in treatment-resistant depression associated with symptom remission, structural brain changes and reduced neuronal phospholipid turnover. Int J Clin Pract. 2001;55:560–3.PubMedGoogle Scholar
  179. Raichlen DA, Foster AD, Gerdeman GL, Seillier A, Giuffrida A. Wired to run: exercise-induced endocannabinoid signaling in humans and cursorial mammals with implications for the ‘runner’s high’. J Exp Biol. 2012;215:1331–6.PubMedCrossRefGoogle Scholar
  180. Raison CL, Miller AH. Is depression an inflammatory disorder? Curr Psychiatry Rep. 2011;13:467–75.PubMedPubMedCentralCrossRefGoogle Scholar
  181. Raji CA, Erickson KI, Lopez OL, Kuller LH, Gach HM, Thompson PM, et al. Regular fish consumption and age-related brain gray matter loss. Am J Prev Med. 2014;47:444–51.PubMedPubMedCentralCrossRefGoogle Scholar
  182. Rao JS, Ertley RN, Lee HJ, DeMar JC, Arnold JT, Rapoport SI, et al. n-3 polyunsaturated fatty acid deprivation in rats decreases frontal cortex BDNF via a p38 MAPK-dependent mechanism. Mol Psychiatry. 2007;12:36–46.PubMedCrossRefGoogle Scholar
  183. Rivero G, Gabilondo AM, García-Sevilla JA, La Harpe R, Callado LF, Meana JJ. Increased α2- and β1-adrenoceptor densities in postmortem brain of subjects with depression: differential effect of antidepressant treatment. J Affect Disord. 2014;167:343–50.PubMedCrossRefGoogle Scholar
  184. Robson LG, Dyall S, Sidloff D, Michael-Titus AT. Omega-3 polyunsaturated fatty acids increase the neurite outgrowth of rat sensory neurones throughout development and in aged animals. Neurobiol Aging. 2010;31:678–87.PubMedCrossRefGoogle Scholar
  185. Rosenblat JD, McIntyre RS. Bipolar Disorder and Inflammation. Psychiatr Clin North Am. 2016;39:125–37.PubMedCrossRefGoogle Scholar
  186. Russo-Neustadt A, Beard RC, Cotman CW. Exercise, antidepressant medications, and enhanced brain derived neurotrophic factor expression. Neuropsychopharmacology. 1999;21:679–82.PubMedCrossRefGoogle Scholar
  187. Ruxton CHS, Calder PC, Reed SC, Simpson MJ. The impact of long chain n-3 polyunsaturated fatty acids on human health. Nutr Res Rev. 2005;18:113–29.PubMedCrossRefGoogle Scholar
  188. Ryan SM, Nolan YM. Neuroinflammation negatively affects adult hippocampal neurogenesis and cognition: can exercise compensate? Neurosci Biobehav Rev. 2016;61:121–31.PubMedCrossRefGoogle Scholar
  189. Saarni SI, Suvisaari J, Sintonen H, Pirkola S, Koskinen S, Aromaa A, et al. Impact of psychiatric disorders on health-related quality of life: general population survey. Br J Psychiatry. 2007;190:326–32.PubMedCrossRefGoogle Scholar
  190. Sahay A, Scobie KN, Hill AS, O’Carroll CM, Kheirbek MA, Burghardt NS, et al. Increasing adult hippocampal neurogenesis is sufficient to improve patternseparation. Nature. 2011;472:466–70.PubMedPubMedCentralCrossRefGoogle Scholar
  191. Salem N, Litman B, Kim HY, Gawrisch K. Mechanisms of action of docosahexaenoic acid in the nervous system. Lipids. 2001;36:945–59.PubMedCrossRefGoogle Scholar
  192. Samieri C, Jutand MA, Feart C, Capuron L, Letenneur L, Barberger-Gateau P. Dietary patterns derived by hybrid clustering method in older people: association with cognition, mood, and self-rated health. J Am Diet Assoc. 2008;108:1461–71.PubMedCrossRefGoogle Scholar
  193. Samieri C, Maillard P, Crivello F, Proust-Lima C, Peuchant E, Helmer C, et al. Plasma long-chain omega-3 fatty acids and atrophy of the medial temporal lobe. Neurology. 2012;79:642–50.PubMedCrossRefGoogle Scholar
  194. Sanchez-Villegas A, Delgado-Rodriguez M, Alonso A, Schlatter J, Lahortiga F, Serra Majem L, et al. Association of the Mediterranean dietary pattern with the incidence of depression: the Seguimiento Universidad de Navarra/University of Navarra follow-up (SUN) cohort. Arch Gen Psychiatry. 2009;66:1090–8.PubMedCrossRefGoogle Scholar
  195. Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science. 2003;301:805–9.PubMedCrossRefGoogle Scholar
  196. Sarris J. Clinical depression: an evidence-based integrative complementary medicine treatment model. Altern Ther Health Med. 2011;17:26–37.PubMedGoogle Scholar
  197. Schmidt-Hieber C, Jonas P, Bischofberger J. Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature. 2004;429:184–7.PubMedCrossRefGoogle Scholar
  198. Serhan CN. Novel eicosanoid and docosanoid mediators: resolvins, docosatrienes, and neuroprotectins. Curr Opin Clin Nutr Metab Care. 2005;8:115–21.PubMedCrossRefGoogle Scholar
  199. Shapiro GD, Fraser WD, Séguin JR. Emerging risk factors for postpartum depression: serotonin transporter genotype and omega-3 fatty acid status. Can J Psychiatry. 2012;57:704–12.PubMedPubMedCentralCrossRefGoogle Scholar
  200. Sheline YI, Wang PW, Gado MH, Csernansky JG, Vannier MW. Hippocampal atrophy in recurrent major depression. Proc Natl Acad Sci U S A. 1996;93:3908–13.PubMedPubMedCentralCrossRefGoogle Scholar
  201. Shimizu E, Hashimoto K, Okamura N, Koike K, Komatsu N, Kumakiri C, et al. Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biol Psychiatry. 2003;54:70–5.PubMedCrossRefGoogle Scholar
  202. Shors TJ, Miesegaes G, Beylin A, Zhao M, Rydel T, Gould E. Neurogenesis in the adult is involved in the formation of trace memories. Nature. 2001;410:372–6.PubMedCrossRefGoogle Scholar
  203. Sierra A, Encinas JM, Deudero JJ, Chancey JH, Enikolopov G, Overstreet-Wadiche LS, et al. Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell. 2010;7:483–95.PubMedPubMedCentralCrossRefGoogle Scholar
  204. Sierra A, Tremblay MÈ, Wake H. Never-resting microglia: physiological roles in the healthy brain and pathological implications. Front Cell Neurosci. 2014;15:240.Google Scholar
  205. Sinn N, Milte C, Howe PRC. Oiling the brain: a review of randomized controlled trials of omega-3 fatty acids in psychopathology across the lifespan. Nutrients. 2010;2:128–70.PubMedPubMedCentralCrossRefGoogle Scholar
  206. Snyder J, Hong NS, McDonald RJ, Wojtowicz JM. A role for adult neurogenesis in spatial long-term memory. Neuroscience. 2005;130:843–52.PubMedCrossRefGoogle Scholar
  207. Song C, Li X, Leonard BE, Horrobin DF. Effects of dietary n-3 or n-6 fatty acids on interleukin-1beta-induced anxiety, stress, and inflammatory responses in rats. J Lipid Res. 2003;44:1984–91.PubMedCrossRefGoogle Scholar
  208. Song MR, Lee YS, Baek JD, Miller M. Physical activity status in adults with depression in the National Health and Nutrition Examination Survey, 2005–2006. Public Health Nurs. 2012;29:208–17.PubMedCrossRefGoogle Scholar
  209. Song C, Shieh CH, Wu YS, Kalueff A, Gaikwad S, Su KP. The role of omega-3 polyunsaturated fatty acids eicosapentaenoic and docosahexaenoic acids in the treatment of major depression and Alzheimer’s disease: acting separately or synergistically? Prog Lipid Res. 2016;62:41–54.PubMedCrossRefGoogle Scholar
  210. Sorrells SF, Sapolsky RM. An inflammatory review of glucocorticoid actions in the CNS. Brain Behav Immun. 2007;21:259–72.PubMedCrossRefGoogle Scholar
  211. Speisman RB, Kumar A, Rani A, Foster TC, Ormerod BK. Daily exercise improves memory, stimulates hippocampal neurogenesis and modulates immune and neuroimmune cytokines in aging rats. Brain Behav Immun. 2013;28:25–43.PubMedCrossRefGoogle Scholar
  212. Steffens DC, Byrum CE, McQuoid DR, Greenberg DL, Payne ME, Blitchington TF, et al. Hippocampal volume in geriatric depression. Biol Psychiatry. 2000;48:301–9.PubMedCrossRefGoogle Scholar
  213. Stemmelin J, Cohen C, Terranova JP, Lopez-Grancha M, Pichat P, Bergis O, et al. Stimulation of the beta3-Adrenoceptor as a novel treatment strategy for anxiety and depressive disorders. Neuropsychopharmacology. 2008;33:574–87.PubMedCrossRefGoogle Scholar
  214. Stephens T. Physical activity and mental health in the United States and Canada: evidence from four population surveys. Prev Med. 1988;17:35–47.PubMedCrossRefGoogle Scholar
  215. Stranahan AM, Khalil D, Gould E. Social isolation delays the positive effects of running on adult neurogenesis. Nat Neurosci. 2006;9:526–33.PubMedPubMedCentralCrossRefGoogle Scholar
  216. Ströhle A, Stoy M, Graetz B, Scheel M, Wittmann A, Gallinat J, et al. Acute exercise ameliorates reduced brain-derived neurotrophic factor in patients with panic disorder. Psychoneuroendocrinology. 2010;35:364–8.PubMedCrossRefGoogle Scholar
  217. Su KP. Biological mechanism of antidepressant effect of omega-3 fatty acids: how does fish oil act as a ‘mind-body interface’? Neurosignals. 2009;17:144–52.PubMedCrossRefGoogle Scholar
  218. Su KP, Huang SY, Peng CY, Lai HC, Huang CL, Chen YC, et al. Phospholipase A2 and cyclooxygenase 2 genes influence the risk of interferon-alpha-induced depression by regulating polyunsaturated fatty acids levels. Biol Psychiatry. 2010;67:550–7.PubMedCrossRefGoogle Scholar
  219. Su KP, Lai HC, Yang HT, Su WP, Peng CY, Chang JP, et al. Omega-3 fatty acids in the prevention of interferon-alpha-induced depression: results from a randomized, controlled trial. Biol Psychiatry. 2014;76:559–66.PubMedCrossRefGoogle Scholar
  220. Sublette ME, Ellis SP, Geant AL, Mann JJ. Meta-analysis of the effects of eicosapentaenoic acid (EPA) in clinical trials in depression. J Clin Psychiatry. 2011;72:1577–84.PubMedPubMedCentralCrossRefGoogle Scholar
  221. Sublette ME, Galfalvy HC, Hibbeln JR, Keilp JG, Malone KM, Oquendo MA, et al. Polyunsaturated fatty acid associations with dopaminergic indices in major depressive disorder. Int J Neuropsychopharmacol. 2014;17:383–91.PubMedCrossRefGoogle Scholar
  222. Subramaniam M, Abdin E, Vaingankar JA, Nan L, Heng D, McCrone P, et al. Impact of psychiatric disorders and chronic physical conditions on health-related quality of life: Singapore Mental Health Study. J Affect Disord. 2013;147:325–30.PubMedCrossRefGoogle Scholar
  223. Suominen K, Haukka J, Valtonen HM, Lönnqvist J. Outcome of patients with major depressive disorder after serious suicide attempt. J Clin Psychiatry. 2009;70:1372–8.PubMedCrossRefGoogle Scholar
  224. Swardfager W, Rosenblat JD, Benlamri M, McIntyre RS. Mapping inflammation onto mood: inflammatory mediators of anhedonia. Neurosci Biobehav Rev. 2016;64:148–66.PubMedCrossRefGoogle Scholar
  225. Takeuchi T, Fukumoto Y, Harada E. Influence of a dietary n-3 fatty acid deficiency on the cerebral catecholamine contents, EEG and learning ability in rat. Behav Brain Res. 2002;131:193–203.PubMedCrossRefGoogle Scholar
  226. Tan ZS, Harris WS, Beiser AS, Au R, Himali JJ, Debette S, et al. Red blood cell ω-3 fatty acid levels and markers of accelerated brain aging. Neurology. 2012;78:658–64.PubMedPubMedCentralCrossRefGoogle Scholar
  227. Tanapat P, Hastings NB, Rydel TA, Galea LA, Gould E. Exposure to fox odor inhibits cell proliferation in the hippocampus of adult rats via an adrenal hormone-dependent mechanism. J. Comp. Neurol. 2001;437:496–504.PubMedCrossRefGoogle Scholar
  228. Tashiro A, Makino H, Gage FH. Experience-specific functional modification of the dentate gyrus through adult neurogenesis: a critical period during an immature stage. J Neurosci. 2007;27:3252–9.PubMedCrossRefGoogle Scholar
  229. Titova OE, Sjögren P, Brooks SJ, Kullberg J, Ax E, Kilander L, et al. Dietary intake of eicosapentaenoic and docosahexaenoic acids is linked to gray matter volume and cognitive function in elderly. Age. 2013;35:1495–505.PubMedCrossRefGoogle Scholar
  230. Trejo JL, Llorens-Martín MV, Torres-Alemán I. The effects of exercise on spatial learning and anxiety-like behavior are mediated by an IGF-I-dependent mechanism related to hippocampal neurogenesis. Mol Cell Neurosci. 2008;37:402–11.PubMedCrossRefGoogle Scholar
  231. Trivedi MH, Greer TL, Grannemann BD, Chambliss HO, Jordan AN. Exercise as an augmentation strategy for treatment of major depression. J PsychiatrPract. 2006;12:205–13.Google Scholar
  232. Tronel S, Belnoue L, Grosjean N, Revest JM, Piazza PV, Koehl M, et al. Adult-born neurons are necessary for extended contextual discrimination. Hippocampus. 2012;22:292–8.PubMedCrossRefGoogle Scholar
  233. Vancassel S, Leman S, Hanonick L, Denis S, Roger J, Nollet M, et al. n-3 polyunsaturated fatty acid supplementation reverses stress-induced modifications on brain monoamine levels in mice. J Lipid Res. 2008;49:340–8.PubMedCrossRefGoogle Scholar
  234. Venna VR, Deplanque D, Allet C, Belarbi K, Hamdane M, Bordet R. PUFA induce antidepressant-like effects in parallel to structural and molecular changes in the hippocampus. Psychoneuroendocrinology. 2009;34:199–211.PubMedCrossRefGoogle Scholar
  235. Vetulani J, Sulser F. Action of various antidepressant treatments reduces reactivity of noradrenergic cAMP generating system in limbic forebrain. Nature. 1975;22:181.Google Scholar
  236. Videbech P, Ravnkilde B. Hippocampal volume and depression: a meta-analysis of MRI studies. Am J Psychiatry. 2004;161:1957–66.PubMedCrossRefGoogle Scholar
  237. Vines A, Delattre AM, Lima MM, Rodrigues LS, Suchecki D, Machado RB, et al. The role of 5-HT(1A) receptors in fish oil-mediated increased BDNF expression in the rat hippocampus and cortex: a possible antidepressant mechanism. Neuropharmacology. 2011;62:184–91.PubMedCrossRefGoogle Scholar
  238. Virtanen JK, Siscovick DS, Lemaitre RN, Longstreth WT, Spiegelman D, Rimm EB, et al. Circulating omega-3 polyunsaturated fatty acids and subclinical brain abnormalities on MRI in older adults: the cardiovascular health study. J Am Heart Assoc. 2013;2:e000305.PubMedPubMedCentralCrossRefGoogle Scholar
  239. Vu NQ, Aizenstein HJ. Depression in the elderly: brain correlates, neuropsychological findings, and role of vascular lesion load. Curr Opin Neurol. 2013;26:656–61.PubMedCrossRefGoogle Scholar
  240. Vukovic J, Colditz MJ, Blackmore DG, Ruitenberg MJ, Bartlett PF. Microglia modulate hippocampal neural precursor activity in response to exercise and aging. J Neurosci. 2012;32:6435–43.PubMedCrossRefGoogle Scholar
  241. Walton NM, Sutter BM, Laywell ED, Levkoff LH, Kearns SM, Marshall GP 2nd, et al. Microglia instruct subventricular zone neurogenesis. Glia. 2006;54:815–25.PubMedCrossRefGoogle Scholar
  242. Wang GJ, Volkow ND, Fowler JS, Franceschi D, Logan J, Pappas NR, et al. PET studies of the effects of aerobic exercise on human striatal dopamine release. J Nucl Med. 2000;41:1352–6.PubMedGoogle Scholar
  243. Weicker H, Strüder HK. Influence of exercise on serotonergic neuromodulation in the brain. Amino Acids. 2001;20:35–47.PubMedCrossRefGoogle Scholar
  244. Weng TT, Hao JH, Qian QW, Cao H, Fu JL, Sun Y, et al. Is there any relationship between dietary patterns and depression and anxiety in Chinese adolescents? Public Health Nutr. 2012;15:673–82.PubMedCrossRefGoogle Scholar
  245. Wipfli B, Landers D, Nagoshi C, Ringenbach S. An examination of serotonin and psychological variables in the relationship between exercise and mental health. Scand J Med Sci Sports. 2011;21:474–81.PubMedCrossRefGoogle Scholar
  246. Witte AV, Kerti L, Hermannstädter HM, Fiebach JB, Schreiber SJ, Schuchardt JP, et al. Long-chain omega-3 fatty acids improve brain function and structure in older adults. Cereb Cortex. 2014;24:3059–68.PubMedCrossRefGoogle Scholar
  247. Woo J. Nutritional strategies for successful aging. Med Clin North Am. 2011;95:477–93.PubMedCrossRefGoogle Scholar
  248. Wu A, Ying Z, Gomez-Pinilla F. Dietary omega-3 fatty acids normalize BDNF levels, reduce oxidative damage, and counteract learning disability after traumatic brain injury in rats. J Neurotrauma. 2004;21:1457–67.PubMedCrossRefGoogle Scholar
  249. Wu A, Ying Z, Gomez-Pinilla F. Omega-3 fatty acids supplementation restores mechanisms that maintain brain homeostasis in traumatic brain injury. J Neurotrauma. 2007;24:1587–95.PubMedCrossRefGoogle Scholar
  250. Wu A, Ying Z, Gomez-Pinilla F. Docosahexaenoic acid dietary supplementation enhances the effects of exercise on synaptic plasticity and cognition. Neuroscience. 2008;155:751–9.PubMedPubMedCentralCrossRefGoogle Scholar
  251. Wu A, Ying Z, Gomez-Pinilla F. The salutary effects of DHA dietary supplementation on cognition, neuroplasticity, and membrane homeostasis after brain trauma. J Neurotrauma. 2011;28:2113–22.PubMedPubMedCentralCrossRefGoogle Scholar
  252. Wu A, Ying Z, Gomez-Pinilla F. Exercise facilitates the action of dietary DHA on functional recovery after brain trauma. Neuroscience. 2013;248:655–63.PubMedPubMedCentralCrossRefGoogle Scholar
  253. Wu A, Ying Z, Gomez-Pinilla F. Dietary strategy to repair plasma membrane after brain trauma: implications for plasticity and cognition. Neurorehabil Neural Repair. 2014;28:75–84.PubMedCrossRefGoogle Scholar
  254. Wu YQ, Dang RL, Tang MM, Cai HL, Li HD, Liao DH, et al. Long chain omega-3 polyunsaturated fatty acid supplementation alleviates doxorubicin-induced depressive-like behaviors and neurotoxicity in rats: involvement of oxidative stress and neuroinflammation. Nutrients. 2016;8:243.PubMedPubMedCentralCrossRefGoogle Scholar
  255. Yau SY, Lau BW, So KF. Adult hippocampal neurogenesis: a possible way how physical exercise counteracts stress. Cell Transplant. 2011;20:99–111.PubMedCrossRefGoogle Scholar
  256. Yau SY, Li A, Hoo RL, Ching YP, Christie BR, Lee TM, et al. Physical exercise-induced hippocampal neurogenesis and antidepressant effects are mediated by the adipocyte hormone adiponectin. Proc Natl AcadSci U S A. 2014;111:15810–5.CrossRefGoogle Scholar
  257. Yirmiya R, Rimmerman N, Reshef R. Depression as a microglial disease. Trends Neurosci. 2015;38:637–58.PubMedCrossRefGoogle Scholar
  258. Zhao Y, Shen J, Su H, Li B, Xing D, Du L. Chronic corticosterone injections induce a decrease of ATP levels and sustained activation of AMP-activated protein kinase in hippocampal tissues of male mice. Brain Res. 2008;29:148–56.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Cell Biology and NeurobiologyNational Research Council, Santa Lucia FoundationRomeItaly
  2. 2.Lab of Experimental and Behavioral NeurophysiologySanta Lucia FoundationRomeItaly
  3. 3.Department of PsychologyUniversity Sapienza of RomeRomeItaly

Personalised recommendations