Skip to main content

Structural Elements for Foundations

  • Chapter
  • First Online:
Reinforced Concrete Design to Eurocode 2

Part of the book series: Springer Tracts in Civil Engineering ((SPRTRCIENG))

  • 3323 Accesses

Abstract

This chapter presents the design methods of the foundations starting from the basic soil models and following with the verification of the isolated footings and foundation piles. The analysis of continuous foundation beams, grids and rafts together with then problems of structure–foundation interaction are the examined. The calculation of retaining walls is treated with the models of earth pressure and the pertinent verifications of stability. Finally the diaphragm walls, possibly provided with anchoring prestressed tendons, are presented. The final section shows the application of the design procedures to the different foundation elements of the same multi-storey building treated in the preceeding chapters.

The original version of this chapter was revised: For detailed information please see Erratum. The erratum to this chapter is available at 10.1007/978-3-319-52033-9_11

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giandomenico Toniolo .

Appendix: Data on Soils and Foundations

Appendix: Data on Soils and Foundations

9.1.1 Table 9.1: Soil Parameters

The following tables give indicative values for the main soil parameters, necessary for the stability calculations:

k :

subgrade coefficient (expressed in N/mm3)

g :

unit weight (expressed in kg/dm3)

ϕ :

internal friction angle (expressed in degrees)

c :

cohesion (expressed in N/mm2)

a—subgrade coefficient (N/mm3)

Type of soil

k

Coarse gravel

0.150–0.250

Gravel–sand mixtures

0.100–0.150

Dry clay or silt

0.070–0.100

Compact sand

0.050–0.100

Humid clay or silt

0.030–0.060

Fine or soft sand

0.015–0.020

Recent backfills

0.010–0.020

Organic tillage

0.005–0.015

b—unit weight of soils (kg/dm3)

Type of soil

g (soft)

g (compact)

Dry gravela

1.5–1.7

1.8–2.0

Humid gravela

1.7–1.9

1.9–2.1

Saturated gravela

1.9–2.1

2.0–2.2

Dry organicb

1.4–1.6

1.7–1.9

Humid organicb

1.6–1.8

1.8–2.1

Saturated organicb

1.8–2.0

2.0–2.2

Clay, silt

1.7–1.9

2.0–2.2

  1. aor sand btillage

c—internal friction angle of soils

Type of soil

ϕ

Multi-graded coarse compact gravel

45–50

Multi-graded coarse loose gravel

35–40

Multi-graded round compact gravel

40–45

Mono-graded round compact gravel

35–40

Multi-graded round loose gravel

30–35

Mono-graded round loose gravel

25–30

Compact sand

35–40

Loose sand

25–30

Organic (tillage) sand

15–25

Fata organic (tillage)

0–20

Sandy clay

15–25

Fata clay

0–20

Silt

20–25

  1. aDepending on moisture content, or pore water pressures

d—cohesion of soils (N/mm2)

Type of soil

c

Hard clay

0.100–1.000

Stiff clay

0.050–0.100

Plastic clay

0.020–0.050

Sandy clay

0.010–0.020

Compact silt

0.005–0.010

9.1.2 Chart 9.2: Soil Resistance—Formulas

The following formulas refer to a type of global failure with the formation of a sliding surface in the soil from underneath the foundation up to the ground level. They give the capacity of the foundation in terms of distributed pressure on the horizontal support base of the foundation under the effect of the vertical loads. It is implied that such pressure is constant on the entire resisting support surface, centred on the point O where the resultant of forces is located.

Symbols

r v :

resisting pressure

ϕ :

internal friction angle of foundation soil

c :

cohesion of foundation soil

g :

unit weight of foundation soil

q :

pressure acting on adjacent peripheral zones

b :

characteristic width of foundation

a :

characteristic length of foundation

A :

area of resisting surface

P Ed :

resultant of vertical loads on the base of the foundation

Resistance Verification

(see Table 9.6 for partial safety factors)

$$ P_{\text{Rd}} = r_{\text{v}} A \ge \gamma_{\text{R}} P_{\text{Ed}} , $$

where

$$ r_{\text{v}} = s_{\text{q}} N_{\text{q}} q + s_{\text{c}} N_{\text{c}} c + s_{\text{g}} N_{\text{g}} gb/2 $$

with

$$ \begin{aligned} q & = hg^{\prime } \\ h & = {\text{depth of surrounding soil above the base}} \\ g^{\prime} & = {\text{unit weight of surroundings soil}} \\ s_{\text{q}} & = 1 + (b/a)tg\phi \\ s_{\text{c}} & = 1 + (b/a)\left( {N_{\text{q}} /N_{\text{c}} } \right) \\ s_{\text{g}} & = 1 - 0.4(b/a) \\ \gamma_{\text{R}} & = {\text{model coefficient}} \\ \end{aligned} $$

(see Table 9.6)

The characteristic dimensions a, b (a ≥ b) of the foundation are described in the figure.

The values of N q, N c ed N g are given in Table 9.3 as a function of ϕ.

9.1.3 Table 9.3: Parameters of Resistance Formulas

The following table gives, as a function of the internal friction angle ϕ of soil, the values of the three parameters N q, N c and N g of the formula of Chart 9.2. These values are derived from

$$ \begin{aligned} N_{\text{q}} & = e^{\pi tg\phi } tg^{2} \left( {\frac{\pi }{4} + \frac{\phi }{2}} \right) \\ N_{\text{c}} & = (N_{\text{q}} - 1)/tg\phi \\ N_{\text{g}} & = 2(N_{\text{q}} + 1)tg\phi \\ \\ \end{aligned} $$

tgϕ

Nq

Nc

Ng

Nq/Nc

ϕ

0.00

1.00

5.14

0.00

0.195

0.0

0.01

1.05

5.28

0.04

0.200

0.6

0.02

1.11

5.42

0.08

0.205

1.1

0.03

1.17

5.56

0.13

0.210

1.7

0.04

1.23

5.71

0.18

0.215

2.3

0.05

1.29

5.86

0.23

0.221

2.9

0.06

1.36

6.02

0.28

0.226

3.4

0.07

1.43

6.19

0.34

0.232

4.0

0.08

1.51

6.36

0.40

0.237

4.6

0.09

1.59

6.53

0.47

0.243

5.1

0.10

1.67

6.72

0.53

0.249

5.7

0.11

1.76

6.91

0.61

0.255

6.3

0.12

1.85

7.10

0.68

0.261

6.8

0.13

1.95

7.31

0.77

0.267

7.4

0.14

2.05

7.52

0.85

0.273

8.0

0.15

2.16

7.73

0.95

0.279

8.5

0.16

2.27

7.96

1.05

0.286

9.1

0.17

2.39

8.19

1.15

0.292

9.6

0.18

2.52

8.43

1.27

0.299

10.2

0.19

2.65

8.69

1.39

0.305

10.8

0.20

2.79

8.95

1.52

0.312

11.3

0.21

2.93

9.21

1.65

0.319

11.9

0.22

3.09

9.49

1.80

0.325

12.4

0.23

3.25

9.78

1.95

0.332

13.0

0.24

3.42

10.08

2.12

0.339

13.5

0.25

3.60

10.39

2.30

0.346

14.0

0.26

3.79

10.71

2.49

0.353

14.6

0.27

3.98

11.05

2.69

0.361

15.1

0.28

4.19

11.39

2.91

0.368

15.6

0.29

4.41

11.75

3.14

0.375

16.2

0.30

4.64

12.12

3.38

0.383

16.7

0.31

4.88

12.50

3.64

0.390

17.2

0.32

5.13

12.90

3.92

0.398

17.7

0.33

5.39

13.32

4.22

0.405

18.3

0.34

5.67

13.74

4.54

0.413

18.8

0.35

5.97

14.19

4.88

0.420

19.3

0.36

6.27

14.65

5.24

0.428

19.8

0.37

6.60

15.12

5.62

0.436

20.3

0.38

6.94

15.62

6.03

0.444

20.8

0.39

7.29

16.13

6.47

0.452

21.3

0.40

7.67

16.66

6.93

0.460

21.8

0.41

8.06

17.21

7.43

0.468

22.3

0.42

8.47

17.79

7.95

0.476

22.8

0.43

8.90

18.38

8.52

0.484

23.3

0.44

9.36

18.99

9.11

0.493

23.7

0.45

9.83

19.63

9.75

0.501

24.2

0.46

10.33

20.29

10.43

0.509

24.7

0.47

10.86

20.98

11.15

0.518

25.2

0.48

11.41

21.69

11.91

0.526

25.6

0.49

11.99

22.42

12.73

0.535

26.1

0.50

12.59

23.19

13.59

0.543

26.6

0.51

13.23

23.98

14.51

0.552

27.0

0.52

13.90

24.80

15.49

0.560

27.5

0.53

14.60

25.65

16.53

0.569

27.9

0.54

15.33

26.54

17.64

0.578

28.4

0.55

16.10

27.46

18.81

0.586

28.8

0.56

16.91

28.41

20.06

0.595

29.2

0.57

17.75

29.39

21.38

0.604

29.7

0.58

18.64

30.41

22.78

0.613

30.1

0.59

19.57

31.47

24.27

0.622

30.5

0.60

20.54

32.57

25.85

0.631

31.0

0.61

21.57

33.72

27.53

0.640

31.4

0.62

22.64

34.90

29.31

0.649

31.8

0.63

23.76

36.13

31.20

0.658

32.2

0.64

24.93

37.40

33.20

0.667

32.6

0.65

26.17

38.72

35.32

0.676

33.0

0.66

27.46

40.09

37.56

0.685

33.4

0.67

28.81

41.51

39.94

0.694

33.8

0.68

30.23

42.98

42.47

0.703

34.2

0.69

31.71

44.51

45.14

0.712

34.6

0.70

33.26

46.09

47.97

0.722

35.0

0.71

34.89

47.73

50.96

0.731

35.4

0.72

36.59

49.44

54.14

0.740

35.8

0.73

38.38

51.20

57.49

0.750

36.1

0.74

40.25

53.04

61.05

0.759

36.5

0.75

42.20

54.94

64.80

0.768

36.9

0.76

44.25

56.91

68.78

0.778

37.2

0.77

46.39

58.95

72.99

0.787

37.6

0.78

48.64

61.07

77.43

0.796

38.0

0.79

50.99

63.27

82.14

0.806

38.3

0.80

53.44

65.55

87.11

0.815

38.7

0.81

56.01

67.92

92.36

0.825

39.0

0.82

58.71

70.37

97.92

0.834

39.4

0.83

61.52

72.92

103.78

0.844

39.7

0.84

64.47

75.55

109.98

0.853

40.0

0.85

67.55

78.29

116.53

0.863

40.4

0.86

70.77

81.13

123.45

0.872

40.7

0.87

74.14

84.07

130.75

0.882

41.0

0.88

77.67

87.12

138.46

0.891

41.3

0.89

81.36

90.29

146.60

0.901

41.7

0.90

85.21

93.57

155.19

0.911

42.0

0.91

89.25

96.98

164.25

0.920

42.3

0.92

93.46

100.51

173.81

0.930

42.6

0.93

97.87

104.17

183.91

0.940

42.9

0.94

102.48

107.96

194.55

0.949

43.2

0.95

107.30

111.90

205.78

0.959

43.5

0.96

112.34

115.98

217.61

0.969

43.8

0.97

117.61

120.21

230.10

0.978

44.1

0.98

123.11

124.60

243.26

0.988

44.4

0.99

128.86

129.15

257.13

0.998

44.7

1.00

134.87

133.87

271.75

1.007

45.0

1.01

141.16

138.77

287.15

1.017

45.3

1.02

147.72

143.84

303.39

1.027

45.6

1.03

154.58

149.10

320.49

1.037

45.8

1.04

161.74

154.56

338.51

1.046

46.1

1.05

169.23

160.22

357.48

1.056

46.4

1.06

177.05

166.08

377.46

1.066

46.7

1.07

185.22

172.17

398.51

1.076

46.9

1.08

193.75

178.47

420.66

1.086

47.2

1.09

202.66

185.01

443.98

1.095

47.5

1.10

211.97

191.79

468.53

1.105

47.7

1.11

221.69

198.82

494.37

1.115

48.0

1.12

231.84

206.11

521.56

1.125

48.2

1.13

242.44

213.66

550.17

1.135

48.5

1.14

253.51

221.50

580.28

1.145

48.7

1.15

265.06

229.62

611.94

1.154

49.0

1.16

277.13

238.04

645.25

1.164

49.2

1.17

289.72

246.77

680.28

1.174

49.5

1.18

302.87

255.82

717.12

1.184

49.7

1.19

316.59

265.20

755.86

1.194

50.0

1.20

330.91

274.93

796.59

1.204

50.2

9.1.4 Chart 9.4: Lateral Earth Pressure

The following formulas refer to the pressures applied on the vertical face of a retaining wall by a horizontal embankment.

Symbols

ξ :

depth of a stratum from the surface of the retained soil

q :

superimposed surface load applied on the retained soil

σ v :

vertical pressure applied at a depth ξ

p h :

horizontal pressure on the wall due to active pressure

r h :

horizontal pressure on the wall due to passive resistance

see also Chart 9.2.

Lateral Earth Pressures

$$ \begin{aligned} & p_{\text{h}} = - 2c\sqrt {\lambda_{\text{a}} } + \lambda_{\text{a}} \sigma_{\text{v}} \quad ( \ge 0)\quad {\text{active pressure}} \\ & r_{\text{h}} = + 2c\sqrt {\lambda_{\text{p}} } + \lambda_{\text{p}} \sigma_{\text{v}} \quad {\text{passive resistance}} \\ \end{aligned} $$

with

$$ \begin{aligned} & \sigma_{\text{v}} = q + g\xi \\ & \lambda_{\text{a}} = tg^{2} \left( {\frac{\pi }{4} - \frac{\phi }{2}} \right)\quad {\text{active pressure coefficient}} \\ & \lambda_{\text{p}} = tg^{2} \left( {\frac{\pi }{4} + \frac{\phi }{2}} \right) = \frac{1}{{\lambda_{\text{a}} }}\quad {\text{passive resistance coefficient}} \\ \end{aligned} $$

The values of λ a and λ p are shown in Table 9.5.

9.1.5 Table 9.5: Active and Passive Pressure Coefficients

For the meaning of symbols see Charts 9.2 and 9.4.

tgϕ

λ a

λ p

ϕ

tgϕ

λ a

λ p

ϕ

0.00

1.000

1.000

0.0

    

0.01

0.980

1.020

0.6

0.42

0.442

2.264

22.8

0.02

0.961

1.041

1.2

0.44

0.426

2.349

23.8

0.03

0.942

1.062

1.7

0.46

0.411

2.436

24.7

0.04

0.923

1.083

2.3

0.48

0.396

2.526

25.6

0.05

0.905

1.105

2.9

0.50

0.382

2.618

26.6

0.06

0.887

1.127

3.4

0.52

0.369

2.713

27.5

0.07

0.869

1.150

4.0

0.54

0.356

2.811

28.4

0.08

0.852

1.173

4.6

0.56

0.344

2.911

29.3

0.09

0.835

1.197

5.1

0.58

0.332

3.014

30.1

0.10

0.819

1.221

5.7

0.60

0.321

3.119

31.0

0.11

0.803

1.246

6.3

0.62

0.310

3.228

31.8

0.12

0.787

1.271

6.8

0.64

0.299

3.339

32.6

0.13

0.772

1.296

7.4

0.66

0.290

3.453

33.4

0.14

0.756

1.322

8.0

0.68

0.280

3.569

34.2

0.15

0.742

1.348

8.5

0.70

0.271

3.689

35.0

0.16

0.727

1.375

9.1

0.72

0.262

3.811

35.8

0.17

0.713

1.403

9.7

0.74

0.254

3.936

36.5

0.18

0.699

1.431

10.2

0.76

0.246

4.064

37.2

0.19

0.685

1.459

10.8

0.78

0.238

4.195

38.0

0.20

0.672

1.488

11.3

0.80

0.231

4.329

38.7

0.21

0.659

1.517

11.9

0.82

0.224

4.466

39.4

0.22

0.646

1.547

12.4

0.84

0.217

4.605

40.0

0.23

0.634

1.578

13.0

0.86

0.211

4.748

40.7

0.24

0.622

1.609

13.5

0.88

0.204

4.893

41.4

0.25

0.610

1.640

14.0

0.90

0.198

5.042

42.0

0.26

0.598

1.672

14.6

0.92

0.193

5.193

42.6

0.27

0.586

1.705

15.1

0.94

0.187

5.347

43.2

0.28

0.575

1.738

15.6

0.96

0.182

5.505

43.8

0.29

0.564

1.772

16.2

0.98

0.177

5.665

44.4

0.30

0.554

1.806

16.7

1.00

0.172

5.828

45.0

0.31

0.543

1.841

17.2

1.02

0.167

5.995

45.6

0.32

0.533

1.877

17.7

1.04

0.162

6.164

46.1

0.33

0.523

1.913

18.3

1.06

0.158

6.337

46.7

0.34

0.513

1.949

18.8

1.08

0.154

6.512

47.2

0.35

0.503

1.987

19.3

1.10

0.149

6.691

47.7

0.36

0.494

2.024

19.8

1.12

0.146

6.872

48.2

0.37

0.485

2.063

20.3

1.14

0.142

7.057

48.7

0.38

0.476

2.102

20.8

1.16

0.138

7.244

49.2

0.39

0.467

2.141

21.3

1.18

0.134

7.435

49.7

0.40

0.458

2.182

21.8

1.20

0.131

7.629

50.2

9.1.6 Table 9.6: Partial Safety Factors

The following table gives the values of the partial safety factors, the ones to be used to amplify forces:

$$ \left\{ \begin{aligned} & G_{{1{\text{d}}}} = \gamma_{{{\text{G}}1}} G1\quad \left( {\text{structural self-weight}} \right) \\ & G_{{2{\text{d}}}} = \gamma_{{{\text{G}}2 \, }} G2\quad \left( {\text{superimposed dead load}} \right) \\ & Q_{\text{d}} = \gamma_{\text{G}} Q_{\text{k}} \quad \left( {{\text{live loads{-}variable actions}}} \right) \\ \end{aligned} \right\} $$

and the ones to be used to reduce the soil characteristics

$$ \begin{aligned} & \left( {tg\phi } \right)_{\text{d}} = \left( {tg\phi } \right)_{\text{k}} /\gamma_{\phi } \quad \left( {\text{internal friction}} \right) \\ & c_{\text{d}} = c_{\text{k}} /\gamma_{\text{c}} \quad \left( {\text{cohesion}} \right) \\ & c_{\text{ud}} = c_{\text{uk}} /\gamma_{\text{cu}} \quad \left( {\text{undrained cohesion}} \right) \\ & g_{\text{d}} = g/\gamma_{{{\gamma }}} \quad \left( {\text{weight of soil}} \right) \\ \end{aligned} $$

There are three types of verifications, referred to three different ultimate limit states of the resisting system

EQU:

stability verifications against the possible loss of equilibrium of the structure as rigid body (with irrelevant mechanical properties of the soil);

STR:

verifications of resistance of the foundation element against the possible failure of its critical zones (with elastic reaction of the soil);

GEO:

verifications of stability of the soil against its possible global failure (see Chart 9.2) or any other type of failure (including the verifications of overturning and sliding)

In particular, the undrained cohesion c u is used, together with ϕ = 0, in place of the cohesion c in the formulas of resistance and lateral pressures (see Charts 9.2 and 9.4) for the short-term verification of soft clays.

It is implied that for each couple of values, the lesser or greater is used depending on whether the action is favourable or unfavourable,

The coefficients referred to the soil always reduce its characteristics, with respect to both the possible lower resistance and the possible greater active pressure,

The coefficients shown here are related to the ones of Charts 3.1 and 3.2 for the forces and the ones of Charts 2.2 and 2.3 for the resistance of materials (verifications of the type STR).

  

EQU

STR

GEO

Forcesloads

Structural self-weight

γ G1

0.9 ÷ 1.1

1.0 ÷ 1.3

1.0

Other permanent loads

γ G2

0.0 ÷ 1.5

0.0 ÷ 1.5

0.0 ÷ 1.3

Live loads–variable actions

γ Q

0.0 ÷ 1.5

0.0 ÷ 1.5

0.0 ÷ 1.3

Soil parameters

Friction angle

γ φ

1.25

1.25

1.25

Cohesion

γ c

1.25

1.25

1.25

Undrained cohesion

γ cu

1.4

1.4

1.4

Weight of soil

γ γ

1.0

1.0

1.0

Model coefficients

Overturning

\( \upgamma_{\text{R}}^{{\prime }} \)

1.0

1.8

Sliding

\( \upgamma_{\text{R}}^{{\prime }} \)

1.1

1.1

Soil resistance

γ R

1.8

Driven piles (tip bearing)

γ b

1.45

Driven piles (skin friction)

γ s

1.45

Bored piles (end bearing)

\( \upgamma_{\text{b}}^{{\prime }} \)

1.7

bored piles (skin friction)

\( \upgamma_{\text{s}}^{{\prime }} \)

1.45

9.1.7 Chart 9.7: Construction Requirements of Foundations

With reference mainly to the durability requirements, the following minimum measures are recommended.

Reinforcement Cover

In order to take into account the lower construction precision of the foundation works, the reinforcement covers should be appropriately increased with respect to the ones given in Table 2.17.

Bored piles

75 mm

Surface cast against the excavation

75 mm

Surface cast against levelled ground

50 mm

Surface cast against blinding

35 mm

Footings (except the base)

40 mm

Beams (except the base)

40 mm

Walls: surface against retained soil

30 mm

These values should be taken as minimum design values and include the following tolerances:

Footings

± 15 mm

Beams

± 10 mm

Walls

± 5 mm

Bored piles

± 50 mm

For aggressive soils, the minimum values of covers shown above should be increased by 25 mm.

Minimum Reinforcement

If their size is relatively big and the possible cracking due to shrinkage does not compromise the resistance significantly, the foundations can be made of unreinforced or lightly reinforced concrete. In this case, the following prescriptions on minimum reinforcement do not apply.

For continuous tie beams and other slender tying elements that resist axial tension forces, when the significant length can lead to early cracking due to shrinkage, a minimum longitudinal reinforcement should be provided equal to

$$ A_{\text{s}} \ge A_{\text{c}} f_{\text{ctm}} /f_{{y{\text{k}}}} $$

similar to reinforced concrete ties (see Chart 2.14).

For element predominantly in bending, such as foundation beams, a minimum reinforcement on the edge in tension should be provided

$$ A_{\text{s}} \ge \frac{1}{2}y_{\text{c}}^{\prime } bf_{\text{ctm}} /f_{\text{yk}} $$

similar to uncracked reinforced concrete beams (see Chart 3.19), where \( y_{\text{c}}^{{\prime }} \) indicates the depth of the portion in tension and b indicates its width.

9.1.8 Chart 9.8: Verifications Against Overturning and Sliding

The following formulas refer to the equilibrium of the isolated foundation as a rigid body, whose stability relies only on the support base.

Symbols

P Ed :

vertical action on the support base of the foundation

e :

eccentricity of the vertical action with respect to the centre

a :

length of the foundation (orthogonal to e)

b :

width of the foundation (parallel to e)

x :

width of the loaded limit strip

H Ed :

horizontal force on the support base of the foundation

μ :

soil-foundation friction coefficient

see also Charts 9.2 and 9.4.

Overturning Verification

We refer to combined compression and uniaxial bending on a rectangular foundation, whose support base is not entirely in compression, with the dimensions of the resisting footprint a·x (Charts 9.2 and 9.3). For a given vertical action P Ed, the limit equilibrium situation is characterized by the value x defined as follows.

The overturning verification is set with

$$ e_{\lim } > e, $$

where

$$ e_{\lim } = (b - x)/2 $$

Cohesive soilgeneral case

The width x of the loaded strip is obtained solving the equation:

$$ r_{\text{l}} (x)x^{2} + r_{\text{o}}^{\prime } (x)x - \gamma_{\text{R}} p_{\text{Ed}} = 0 $$

with

$$ \begin{aligned} & r_{\text{l}} = s_{\text{g}} N_{\text{g}} g/2 \\ & r_{\text{o}} = s_{\text{q}} N_{\text{q}} q + s_{\text{c}} N_{\text{c}} c \\ & p_{\text{Ed}} = P_{\text{Ed}} /a \\ & s_{\text{g}} = 1 - 0.4\beta_{\text{x}} \\ & s_{\text{q}} = 1 + \beta_{\text{x}} tg\phi \\ & s_{\text{c}} = 1 + \beta_{\text{x}} N_{\text{q}} /N_{\text{c}} \\ & \beta_{\text{x}} = x/a\quad se\quad x \le a \\ & \beta_{\text{x}} = a/x\quad se\quad x > a \\ \end{aligned} $$

Cohesive soilβ x assigned

For a rectangular foundation, if an assumption is made for the ratio β x , consequently giving a constant value to the three coefficients s g, s q and s c, the following solution is obtained

$$ x \cong \left\{ { - r_{\text{o}} + \sqrt {r_{\text{o}}^{2} + 4r_{\text{l}} \gamma_{\text{R}} p_{\text{Ed}} } } \right\}/(2r_{\text{l}} ) $$

The solution can be refined re-evaluating the three coefficients s g, s q and s c on the basis of the calculated x.

Cohesive soilstrip footing

For a strip footing with a ≫ b, being x/a ≅ 0 one has s g = s q = s c = 1, therefore one obtains:

$$ x = \left\{ { - r_{\text{o}} + \sqrt {r_{\text{o}}^{2} + 4r_{\text{l}} \gamma_{\text{R}} p_{\text{Ed}} } } \right\}/(2r_{\text{l}} ) $$

Non-cohesive soilwithout surrounding pressure

With c = q = 0 and with an assumption on β x for the evaluation of s g = 1–0.4β x , one obtains

$$ x \cong \sqrt {2\gamma_{\text{R}} p_{\text{Ed}} /s_{\text{g}} N_{\text{g}} g} $$

The solution can be refined re-evaluating s g on the basis of the calculated x.

For a strip footing (s g = 1) the revised solution is obtained directly with

$$ x = \sqrt {2\gamma_{\text{R}} p_{\text{Ed}} /N_{\text{g}} g} $$

Sliding Verification

When the horizontal translational equilibrium relies on the friction of the support base, it is verified when

$$ H_{\text{Ed}} < \mu P_{\text{Ed}} $$

with μ ≤ tgϕ.

9.1.9 Chart 9.9: Reinforced Concrete Footings: Resistance Verifications

We refer to a stocky footing, with a parallelepiped shape, to support a centred column. It is implied that such footing is reinforced with an orthogonal grid of bars at the bottom.

Symbols

P Ed :

vertical action transferred from the column to the footing

M Ed :

bending moment from the column (along a′)

H Ed :

shear force from the column (along a′)

a′, b′:

sides of the column

h :

footing depth

a, b :

sides of the footing (parallel to a′, b′)

G :

footing self-weight

A sa, A sb :

footing reinforcement along a and b

d a, d b :

footing effective depths along a and b

see also Charts 2.2 and 2.3.

Verifications of Resistance

The resistance of each part of the footing shall be related to the pressure received back from the soil, distributed on the support base as deduced on the basis of the applied loads, with the assumptions of elastic behaviour of the soil and infinitely rigid footing.

Centred load (e = 0)

$$ \sigma_{\text{g}} = \frac{{P_{\text{Ed}} }}{ab}\quad {\text{constant pressure }}\left( {{\text{without}}\,G} \right) $$
  • reinforcement along a

    $$ \begin{aligned} & s_{\text{a}} = (a - a^{\prime} )/2\quad {\text{footing protrusion}} \\ & P_{\text{ad}} = s_{\text{a}} b\sigma_{\text{g}} = \frac{a - a^{\prime} }{2a}P_{\text{d}} \\ & A_{\text{sa}} \ge \lambda_{\text{a}} P_{\text{Ed}} /f_{\text{yd}} \\ \end{aligned} $$

with

$$ \begin{aligned} & \lambda_{\text{a}} = l_{\text{a}} /d_{\text{a}} \quad l_{\text{a}} = c_{\text{a}} + s_{\text{a}} /2 \\ & c_{\text{a}} = \hbox{min} (0.2d_{\text{a}} ,a^{\prime} /4) \\ \end{aligned} $$
  • reinforcement along b

    $$ \begin{aligned} & s_{\text{b}} = (b - b^{\prime} )/2\quad {\text{footing protrusion}} \\ & P_{\text{bd}} = s_{\text{b}} a\sigma_{\text{v}} = \frac{b - b^{\prime} }{2b}P_{\text{Ed}} \\ & A_{\text{sd}} \ge \lambda_{\text{b}} P_{\text{bd}} /f_{\text{yd}} \\ \end{aligned} $$

with

$$ \begin{aligned} & \lambda_{\text{b}} = l_{\text{b}} /d_{\text{b}} \quad l_{\text{b}} = c_{\text{b}} + s_{\text{b}} /2 \\ & c_{\text{b}} = \hbox{min} (0.2d_{\text{b}} ,b^{\prime} /4) \\ \end{aligned} $$
  • concrete resistance

    $$ P_{\text{Ed}}^{\prime } = \left( {1 - \frac{a^{\prime} b^{\prime} }{ab}} \right)P_{\text{Ed}} < P_{\text{rc}} $$

with

$$ P_{\text{rc}} = 0.8f_{\text{cd}} \left( {\frac{{b^\prime d_{\text{a}} }}{{1 + \lambda_{\text{a}}^{2} }} + \frac{{a^\prime d_{\text{b}} }}{{1 + \lambda_{\text{b}}^{2} }}} \right) $$

Eccentric load (e > 0)

$$ \begin{aligned} & N = P_{\text{Ed}} + G \\ & M = M_{\text{Ed}} + H_{\text{Ed}} h \\ & e = M/N \\ \end{aligned} $$
  • Base entirely in compression (e ≤ a/6)

    $$ \begin{aligned} & \sigma_{\text{o}} = P_{\text{Ed}} /ab\quad {\text{centroidal }}\left( {{\text{without}}\,G} \right) \\ & \sigma = 6M/a^{2} b\quad {\text{due to bending moment}} \\ & \sigma_{\text{g}}^{\prime } = \sigma_{\text{o}} + (a^{\prime}/a)\sigma \quad {\text{at column edge}} \\ & \sigma_{\text{g}}^{\prime \prime } = (1 - a^{\prime} /a)\sigma \quad {\text{increment at footing edge}} \\ \end{aligned} $$

pressures resultant

$$ P_{\text{ad}} = s_{\text{a}} b\sigma_{\text{g}}^{\prime } + s_{\text{a}} b\sigma_{\text{g}}^{\prime \prime } /2 $$

resultant position

$$ \begin{aligned} & u = \left( {s_{\text{a}}^{2} b\sigma_{\text{g}}^{\prime } /2 + s_{\text{a}}^{2} b\sigma_{\text{g}}^{\prime \prime } /6} \right)/P_{\text{ad}} \\ & A_{\text{sa}} \ge \lambda_{\text{a}} P_{\text{ad}} /f_{\text{sd}} \\ \end{aligned} $$

with

$$ \begin{aligned} \lambda_{\text{a}} & = l_{\text{a}} /d_{\text{a}} \quad l_{\text{a}} = c_{\text{a}} + s_{\text{a}} - u \\ c_{\text{a}} & = \hbox{min} (0.2d,a^{\prime } /4) \\ \end{aligned} $$
  • Base not entirely in compression (e > a/6)

    $$ \begin{aligned} & x = 3(a/2 - e)\quad {\text{zone in compression}} \\ & \sigma_{\text{g}} = 2N/bx\quad {\text{maximum at the edge}} \\ & \sigma_{\text{o}} = G/ab\quad {\text{pad self-weight}} \\ \end{aligned} $$

with x s a one has

$$ \begin{aligned} & \sigma_{\text{g}}^{\prime } = \left( {1 - s_{\text{a}} /x} \right)\sigma_{\text{g}} - \sigma_{\text{o}} \quad {\text{column edge }}\left( {{\text{without}}\,G} \right) \\ & \sigma_{\text{g}}^{\prime \prime } = \left( {s_{\text{a}} /x} \right)\sigma_{\text{g}} - \sigma_{\text{o}} \quad {\text{increment at pad edge}} \\ \end{aligned} $$

the verification A sa follows as for the previous case.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Toniolo, G., di Prisco, M. (2017). Structural Elements for Foundations. In: Reinforced Concrete Design to Eurocode 2. Springer Tracts in Civil Engineering . Springer, Cham. https://doi.org/10.1007/978-3-319-52033-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52033-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52032-2

  • Online ISBN: 978-3-319-52033-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics