Skip to main content

Strongly Correlated Photons in Nonlinear Nanophotonic Platforms

  • Chapter
  • First Online:
Quantum Simulations with Photons and Polaritons

Part of the book series: Quantum Science and Technology ((QST))

  • 2109 Accesses

Abstract

Modern nano-fabrication technologies allow to realize photonic propagation and confinement to unprecedented degree of compactness, and very close to lossless conditions. Such figures of merit are inherently driving the possibility to reach a strong enhancement of optical nonlinearities in ordinary semiconductor platforms, which have been mainly used for opto-electronics purposes so far. After reviewing the basic nanophotonic platforms that are used today in integrated quantum photonics, with a focus on photonic crystal cavities and cavity arrays, we will give an overview of recent theoretical descriptions of the strongly correlated photonic concepts in such systems. The focus will be on small-scale systems, compatible with modern nanofabrication capabilities, and on physical quantities of direct experimental access, such as field intensity and second-order correlation function. A few topical cases that will be reviewed include novel quantum photonic devices of increasing system size and complexity, from the quantum optical Josephson interferometer in a three-cavity system, to the out-of-equilibrium phase crossover from delocalized to strongly interacting many-body states in cavity arrays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We notice that the figure of merit to be optimized for coupled QD-cavity based single-photon nonlinearities scales as \(Q/\sqrt{V}_{\mathrm {eff}}\) (see, e.g., Ref. [68]), while antibunching scales as \(Q^2/{V}^2_{\mathrm {eff}}\) for the Kerr-type nonlinearity.

  2. 2.

    We notice that a slightly more complicated behavior, which does not hinder the main conclusions outlined above, occurs for the system of three coupled cavities, sketched in Fig. 6.6b, when the external resonators have a comparable dissipation rate as the central cavity \(\gamma _{1,3} \sim \gamma \), since the coupled modes affect the physical response of the system at large \(J/ \gamma \) [18].

References

  1. A.C. Hewson, The Kondo Problem to Heavy Fermions (Cambridge University Press, Cambridge, 1993)

    Book  Google Scholar 

  2. U. Meirav, E.B. Foxman, Semicond. Sci. Technol. 11, 255 (1996)

    Article  ADS  Google Scholar 

  3. D. Jaksch, C. Bruder, J.I. Cirac, C.W. Gardiner, P. Zoller, Phys. Rev. Lett. 81, 3108 (1998)

    Article  ADS  Google Scholar 

  4. M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, I. Bloch, Nature 415, 39 (2002)

    Article  ADS  Google Scholar 

  5. M.P.A. Fisher, P.B. Weichman, G. Grinstein, D.S. Fisher, Phys. Rev. B 40, 546 (1989)

    Article  ADS  Google Scholar 

  6. S. Sachdev, Quantum Phase Transitions (Cambridge University Press, New York, 2011)

    Book  MATH  Google Scholar 

  7. M.D. Girardeau, J. Math. Phys. 1, 516 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  8. B. Paredes et al., Nature 429, 277 (2004)

    Article  ADS  Google Scholar 

  9. T. Kinoshita, T. Wenger, D.S. Weiss, Science 305, 1125 (2004)

    Article  ADS  Google Scholar 

  10. M.A. Cazalilla, R. Citro, T. Giamarchi, E. Orignac, M. Rigol, Rev. Mod. Phys. 83, 1405 (2011)

    Article  ADS  Google Scholar 

  11. A. Imamoǧlu, H. Schmidt, G. Woods, M. Deutsch, Phys. Rev. Lett. 79, 1467 (1997)

    Article  ADS  Google Scholar 

  12. K.M. Birnbaum, A. Boca, R. Miller, A.D. Boozer, T.E. Northup, H.J. Kimble, Nature 436, 87 (2005)

    Google Scholar 

  13. A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, J. Vučković, Nat. Phys. 4, 859 (2008)

    Article  Google Scholar 

  14. A. Reinhard, T. Volz, M. Winger, A. Badolato, K.J. Hennessy, E.L. Hu, A. Imamoǧlu, Nat. Photon. 6, 93 (2012)

    Article  ADS  Google Scholar 

  15. M.J. Hartmann, F.G.S.L. Brandão, M.B. Plenio, Nat. Phys. 2, 849 (2006)

    Article  Google Scholar 

  16. A.D. Greentree, C. Tahan, J.H. Cole, L.C.L. Hollenberg, Nat. Phys. 2, 856 (2006)

    Article  Google Scholar 

  17. D.G. Angelakis, M.F. Santos, S. Bose, Phys. Rev. A 76, 031805(R) (2007)

    Article  ADS  Google Scholar 

  18. D. Gerace, H.E. Türeci, A. Imamoǧlu, V. Giovannetti, R. Fazio, Nat. Phys. 5, 281 (2009)

    Article  Google Scholar 

  19. I. Carusotto, D. Gerace, H.E. Türeci, S. De Liberato, C. Ciuti, A. Imamoǧlu, Phys. Rev. Lett. 103, 033601 (2009)

    Article  ADS  Google Scholar 

  20. J.L. O’Brien, A. Furusawa, J. Vučković, Nat. Photon. 3, 687 (2009)

    Article  ADS  Google Scholar 

  21. O. El Daïf, A. Baas, T. Guillet, J.-P. Brantut, R. Idrissi, Kaitouni, J.L. Staehli, F. Morier-Genoud, B. Deveaud, Appl. Phys. Lett. 88, 061105 (2006)

    Google Scholar 

  22. M. Liscidini, D. Gerace, D. Sanvitto, D. Bajoni, Appl. Phys. Lett. 98, 121118 (2011)

    Article  ADS  Google Scholar 

  23. J.M. Gérard, D. Barrier, J.Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, T. Rivera, Appl. Phys. Lett. 69, 449 (1996)

    Article  ADS  Google Scholar 

  24. G. Panzarini, L.C. Andreani, Phys. Rev. B 60, 16799 (1999)

    Article  ADS  Google Scholar 

  25. L.C. Andreani, in Electron and Photon Confinement in Semiconductor Nanostructures, ed. by B. Deveaud, A. Quattropani, P. Schwendimann (IOS Press, Amsterdam, 2003), p. 105

    Google Scholar 

  26. I. Carusotto, C. Ciuti, Rev. Mod. Phys. 85, 299 (2013)

    Article  ADS  Google Scholar 

  27. S. Pirotta, M. Patrini, M. Liscidini, M. Galli, G. Dacarro, G. Canazza, G. Guizzetti, D. Comoretto, D. Bajoni, Appl. Phys. Lett. 104, 051111 (2014)

    Article  ADS  Google Scholar 

  28. G. Lerario, A. Cannavale, D. Ballarini, L. Dominici, M. De Giorgi, M. Liscidini, D. Gerace, D. Sanvitto, G. Gigli, Opt. Lett. 39, 2068 (2014)

    Article  ADS  Google Scholar 

  29. M. Notomi, A. Shinya, A. Mitsugi, S. Kuramochi, H.Y. Ryu, Opt. Express 12, 551 (2004)

    Google Scholar 

  30. S.J. McNab, N. Moll, Y.A. Vlasov, Opt. Express 11, 2927 (2003)

    Google Scholar 

  31. Y. Sugimoto, Y. Tanaka, N. Ikeda, Y. Nakamura, K. Asakawa, K. Inoue, Opt. Express 12, 1090 (2004)

    Article  ADS  Google Scholar 

  32. L. O’Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R.M. De La Rue, T.F. Krauss, Electron. Lett. 42, 1454 (2006)

    Article  Google Scholar 

  33. Y. Takahashi, H. Hagino, Y. Tanaka, B.S. Song, T. Asano, S. Noda, Opt. Express 15, 17206 (2007)

    Article  ADS  Google Scholar 

  34. M. Notomi, Rep. Prog. Phys. 73, 096501 (2010)

    Article  ADS  Google Scholar 

  35. J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 2008)

    MATH  Google Scholar 

  36. K. Aoki, D. Guimard, M. Nishioka, M. Nomura, S. Iwamoto, Y. Arakawa, Nat. Photon. 2, 688 (2008)

    Article  ADS  Google Scholar 

  37. J.M. van den Broek, L.A. Woldering, R.W. Tjerkstra, F.B. Segerink, I.D. Setija, W.L. Vos, Adv. Mater. 22, 25 (2012)

    Google Scholar 

  38. T. Ochiai, K. Sakoda, Phys. Rev. B 64, 045108 (2001)

    Google Scholar 

  39. L.C. Andreani, D. Gerace, Phys. Rev. B 73, 235114 (2006)

    Article  ADS  Google Scholar 

  40. A. Yariv, P. Yeh, Photonics: Optical electronics in modern communications (Oxford University Press, New York, 2007)

    Google Scholar 

  41. D. Gerace, L.C. Andreani, Opt. Lett. 29, 1897 (2004)

    Article  ADS  Google Scholar 

  42. Y. Akahane, T. Asano, B.S. Song, S. Noda, Nature 425, 944 (2003)

    Google Scholar 

  43. L.C. Andreani, D. Gerace, M. Agio, Photon. Nanostruct. Fundam. Appl. 2, 103 (2004)

    Article  ADS  Google Scholar 

  44. H. Sekoguchi, Y. Takahashi, T. Asano, S. Noda, Opt. Express 22, 916 (2014)

    Article  ADS  Google Scholar 

  45. Y. Lai, S. Pirotta, G. Urbinati, D. Gerace, M. Minkov, V. Savona, A. Badolato, M. Galli, Appl. Phys. Lett. (to be published, May 2014)

    Google Scholar 

  46. S. Combrié, A. De Rossi, Q.V. Tran, H. Benisty, Opt. Letters 33, 1908 (2008)

    Google Scholar 

  47. N.-V.-Q. Tran, S. Combrié, A. De Rossi, Phys. Rev. B 79, 041101(R) (2009)

    Article  ADS  Google Scholar 

  48. S.L. Portalupi, M. Galli, C. Reardon, T.F. Krauss, L. O’Faolain, L.C. Andreani, D. Gerace, Opt. Express 18, 16064 (2010)

    Article  ADS  Google Scholar 

  49. D. Gerace, L.C. Andreani, Phys. Rev. B 75, 235325 (2007)

    Article  ADS  Google Scholar 

  50. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J.M.J. Keeling, F.M. Marchetti, M.H. Szymańska, R. André, J.L. Staehli, V. Savona, P.B. Littlewood, B. Deveaud, L.S. Dang, Nature 443, 409 (2006)

    Google Scholar 

  51. D. Bajoni, D. Gerace, M. Galli, J. Bloch, R. Braive, I. Sagnes, A. Miard, A. Lemaître, M. Patrini, L.C. Andreani, Phys. Rev. B 80, 201308(R) (2009)

    Article  ADS  Google Scholar 

  52. S. Azzini, D. Gerace, M. Galli, I. Sagnes, R. Braive, A. Lemaître, J. Bloch, D. Bajoni, Appl. Phys. Lett. 99, 111106 (2011)

    Article  ADS  Google Scholar 

  53. A. Faraon, C. Santori, Z. Huang, V.M. Acosta, R.G. Beausoleil, Phys. Rev. Lett. 109, 033604 (2012)

    Google Scholar 

  54. D. Englund, I. Fushman, A. Faraon, J. Vučković, Photon. Nanostruct. Fundam. Appl. 7, 56 (2009)

    Article  ADS  Google Scholar 

  55. R. Bose, D. Sridharan, G. Solomon, E. Waks, Opt. Express 19, 5398 (2011)

    Article  ADS  Google Scholar 

  56. N. Caselli, F. Intonti, F. Riboli, A. Vinattieri, D. Gerace, L. Balet, L.H. Li, M. Francardi, A. Gerardino, A. Fiore, M. Gurioli, Phys. Rev. B 86, 035133 (2012)

    Google Scholar 

  57. A. Majumdar, A. Rundquist, M. Bajcsy, V.D. Dasika, S.R. Bank, J. Vučković, Phys. Rev. B 86, 195312 (2012)

    Article  ADS  Google Scholar 

  58. N. Caselli, F. Intonti, C. Bianchi, F. Riboli, S. Vignolini, L. Balet, L.H. Li, M. Francardi, A. Gerardino, A. Fiore, M. Gurioli, Appl. Phys. Lett. 101, 211108 (2013)

    Google Scholar 

  59. T. Cai, R. Bose, G.S. Solomon, E. Waks, Appl. Phys. Lett. 102, v141118 (2013)

    Google Scholar 

  60. R. Boyd, Nonlinear Optics (Academic Press, California, 1992)

    Google Scholar 

  61. P.D. Drummond, D.F. Walls, J. Phys. A 13, 725 (1980)

    Article  ADS  Google Scholar 

  62. S. Ferretti, D. Gerace, Phys. Rev. B 85, 033303 (2012)

    Article  ADS  Google Scholar 

  63. M.J. Werner, A. Imamoǧlu, Phys. Rev. A 61, 011801(R) (1999)

    Google Scholar 

  64. R. Loudon, The Quantum Theory of Light (Oxford University Press, Oxford, 2003)

    MATH  Google Scholar 

  65. M. Galli, D. Gerace, K. Welna, T.F. Krauss, L. O’Faolain, G. Guizzetti, L.C. Andreani, Opt. Express 18, 26613 (2010)

    Article  ADS  Google Scholar 

  66. L. Tian, H.J. Carmichael, Phys. Rev. A 46, 6801(R) (1992)

    Google Scholar 

  67. E.T. Jaynes, F.W. Cummings, Proc. IEEE 51, 89 (1963)

    Google Scholar 

  68. L.C. Andreani, G. Panzarini, J.-M. Gérard, Phys. Rev. B 60, 13276 (1999)

    Article  ADS  Google Scholar 

  69. S. Rebić, A.S. Parkins, S.M. Tan, Phys. Rev. A 69, 035804 (2004)

    Article  ADS  Google Scholar 

  70. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gülde, S. Fält, E. Hu, A. Imamoǧlu, Nature 445, 896 (2007)

    Article  ADS  Google Scholar 

  71. A. Verger, C. Ciuti, I. Carusotto, Phys. Rev. B 73, 193306 (2006)

    Article  ADS  Google Scholar 

  72. I. Carusotto, T. Volz, A. Imamoǧlu, Europhys. Lett. 90, 37001 (2010)

    Article  ADS  Google Scholar 

  73. A. Majumdar, D. Gerace, Phys. Rev. B 87, 235319 (2013)

    Article  ADS  Google Scholar 

  74. T.C.H. Liew, V. Savona, Phys. Rev. Lett. 104, 183601 (2010)

    Article  ADS  Google Scholar 

  75. M. Bamba, A. Imamoǧlu, I. Carusotto, C. Ciuti, Phys. Rev. A 83, 021802(R) (2011)

    Article  ADS  Google Scholar 

  76. H.J. Carmichael, An Open Systems Approach to Quantum Optics (Springer, Berlin, 1993)

    MATH  Google Scholar 

  77. T. Grujic, S.R. Clark, D. Jaksch, D.G. Angelakis, New J. Phys. 14, 103025 (2012)

    Article  Google Scholar 

  78. F. Nissen, S. Schmidt, M. Biondi, G. Blatter, H.E. Türeci, J. Keeling, Phys. Rev. Lett. 108, 233603 (2012)

    Article  ADS  Google Scholar 

  79. A. Tomadin, V. Giovannetti, R. Fazio, D. Gerace, I. Carusotto, H.E. Türeci, A. Imamoǧlu, Phys. Rev. A 81, 061801(R) (2010)

    Article  ADS  Google Scholar 

  80. A. La Boité, G. Orso, C. Ciuti, Phys. Rev. Lett. 110, 233601 (2013)

    Article  ADS  Google Scholar 

  81. K.A. Matveev, M. Gisselfält, L.I. Glazman, M. Jonson, R.I. Shekhter, Phys. Rev. Lett. 70, 2940 (1993)

    Google Scholar 

  82. P. Joyez, P. Lafarge, A. Filipe, D. Esteve, M.H. Devoret, Phys. Rev. Lett. 72, 2458 (1994)

    Google Scholar 

  83. L.J. Geerligs, L.E.M. de Groot, A. Verbruggen, J.E. Mooji, Phys. Rev. Lett. 63, 326 (1989)

    Article  ADS  Google Scholar 

  84. W.J. Elion, M. Matters, U. Geigenmüller, J.E. Mooji, Nature 371, 594 (1994)

    Article  ADS  Google Scholar 

  85. S. Ferretti, L.C. Andreani, H.E. Türeci, D. Gerace, Phys. Rev. A 82, 013841 (2010)

    Article  ADS  Google Scholar 

  86. E.H. Lieb, W. Liniger, Phys. Rev. 130, 1605 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  87. I. Carusotto, Y. Castin, New J. Phys. 5, 91 (2003)

    Article  ADS  Google Scholar 

  88. M.J. Hartmann, Phys. Rev. Lett. 104, 113601 (2010)

    Article  ADS  Google Scholar 

  89. R.O. Umucalilar, I. Carusotto, Phys. Rev. Lett. 108, 206809 (2012)

    Article  ADS  Google Scholar 

  90. C.E. Bardyn, A. Imamoǧlu, Phys. Rev. Lett. 109, 253606 (2012)

    Article  ADS  Google Scholar 

  91. T.C.H. Liew, V. Savona, New J. Phys. 15, 025015 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  92. A.A. Houck, H.E. Türeci, J. Koch, Nat. Phys. 8, 292 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This chapter was meant to provide a short review of some of our research works on strongly correlated photonic systems in integrated photonic platforms. For all these contributions, and for fruitful inspiration and several useful discussions, we are indebted to L.C. Andreani, S. De Liberato, R. Fazio, S. Ferretti, M. Galli, V. Giovannetti, A. Imamoǧlu, V. Savona, and H.E. Türeci.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Gerace .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gerace, D., Ciuti, C., Carusotto, I. (2017). Strongly Correlated Photons in Nonlinear Nanophotonic Platforms. In: Angelakis, D. (eds) Quantum Simulations with Photons and Polaritons. Quantum Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-52025-4_6

Download citation

Publish with us

Policies and ethics