Strongly Correlated Photons in Nonlinear Nanophotonic Platforms

Part of the Quantum Science and Technology book series (QST)


Modern nano-fabrication technologies allow to realize photonic propagation and confinement to unprecedented degree of compactness, and very close to lossless conditions. Such figures of merit are inherently driving the possibility to reach a strong enhancement of optical nonlinearities in ordinary semiconductor platforms, which have been mainly used for opto-electronics purposes so far. After reviewing the basic nanophotonic platforms that are used today in integrated quantum photonics, with a focus on photonic crystal cavities and cavity arrays, we will give an overview of recent theoretical descriptions of the strongly correlated photonic concepts in such systems. The focus will be on small-scale systems, compatible with modern nanofabrication capabilities, and on physical quantities of direct experimental access, such as field intensity and second-order correlation function. A few topical cases that will be reviewed include novel quantum photonic devices of increasing system size and complexity, from the quantum optical Josephson interferometer in a three-cavity system, to the out-of-equilibrium phase crossover from delocalized to strongly interacting many-body states in cavity arrays.



This chapter was meant to provide a short review of some of our research works on strongly correlated photonic systems in integrated photonic platforms. For all these contributions, and for fruitful inspiration and several useful discussions, we are indebted to L.C. Andreani, S. De Liberato, R. Fazio, S. Ferretti, M. Galli, V. Giovannetti, A. Imamoǧlu, V. Savona, and H.E. Türeci.


  1. 1.
    A.C. Hewson, The Kondo Problem to Heavy Fermions (Cambridge University Press, Cambridge, 1993)CrossRefGoogle Scholar
  2. 2.
    U. Meirav, E.B. Foxman, Semicond. Sci. Technol. 11, 255 (1996)ADSCrossRefGoogle Scholar
  3. 3.
    D. Jaksch, C. Bruder, J.I. Cirac, C.W. Gardiner, P. Zoller, Phys. Rev. Lett. 81, 3108 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, I. Bloch, Nature 415, 39 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    M.P.A. Fisher, P.B. Weichman, G. Grinstein, D.S. Fisher, Phys. Rev. B 40, 546 (1989)ADSCrossRefGoogle Scholar
  6. 6.
    S. Sachdev, Quantum Phase Transitions (Cambridge University Press, New York, 2011)CrossRefMATHGoogle Scholar
  7. 7.
    M.D. Girardeau, J. Math. Phys. 1, 516 (1960)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    B. Paredes et al., Nature 429, 277 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    T. Kinoshita, T. Wenger, D.S. Weiss, Science 305, 1125 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    M.A. Cazalilla, R. Citro, T. Giamarchi, E. Orignac, M. Rigol, Rev. Mod. Phys. 83, 1405 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    A. Imamoǧlu, H. Schmidt, G. Woods, M. Deutsch, Phys. Rev. Lett. 79, 1467 (1997)ADSCrossRefGoogle Scholar
  12. 12.
    K.M. Birnbaum, A. Boca, R. Miller, A.D. Boozer, T.E. Northup, H.J. Kimble, Nature 436, 87 (2005)Google Scholar
  13. 13.
    A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, J. Vučković, Nat. Phys. 4, 859 (2008)CrossRefGoogle Scholar
  14. 14.
    A. Reinhard, T. Volz, M. Winger, A. Badolato, K.J. Hennessy, E.L. Hu, A. Imamoǧlu, Nat. Photon. 6, 93 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    M.J. Hartmann, F.G.S.L. Brandão, M.B. Plenio, Nat. Phys. 2, 849 (2006)CrossRefGoogle Scholar
  16. 16.
    A.D. Greentree, C. Tahan, J.H. Cole, L.C.L. Hollenberg, Nat. Phys. 2, 856 (2006)CrossRefGoogle Scholar
  17. 17.
    D.G. Angelakis, M.F. Santos, S. Bose, Phys. Rev. A 76, 031805(R) (2007)ADSCrossRefGoogle Scholar
  18. 18.
    D. Gerace, H.E. Türeci, A. Imamoǧlu, V. Giovannetti, R. Fazio, Nat. Phys. 5, 281 (2009)CrossRefGoogle Scholar
  19. 19.
    I. Carusotto, D. Gerace, H.E. Türeci, S. De Liberato, C. Ciuti, A. Imamoǧlu, Phys. Rev. Lett. 103, 033601 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    J.L. O’Brien, A. Furusawa, J. Vučković, Nat. Photon. 3, 687 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    O. El Daïf, A. Baas, T. Guillet, J.-P. Brantut, R. Idrissi, Kaitouni, J.L. Staehli, F. Morier-Genoud, B. Deveaud, Appl. Phys. Lett. 88, 061105 (2006)Google Scholar
  22. 22.
    M. Liscidini, D. Gerace, D. Sanvitto, D. Bajoni, Appl. Phys. Lett. 98, 121118 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    J.M. Gérard, D. Barrier, J.Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, T. Rivera, Appl. Phys. Lett. 69, 449 (1996)ADSCrossRefGoogle Scholar
  24. 24.
    G. Panzarini, L.C. Andreani, Phys. Rev. B 60, 16799 (1999)ADSCrossRefGoogle Scholar
  25. 25.
    L.C. Andreani, in Electron and Photon Confinement in Semiconductor Nanostructures, ed. by B. Deveaud, A. Quattropani, P. Schwendimann (IOS Press, Amsterdam, 2003), p. 105Google Scholar
  26. 26.
    I. Carusotto, C. Ciuti, Rev. Mod. Phys. 85, 299 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    S. Pirotta, M. Patrini, M. Liscidini, M. Galli, G. Dacarro, G. Canazza, G. Guizzetti, D. Comoretto, D. Bajoni, Appl. Phys. Lett. 104, 051111 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    G. Lerario, A. Cannavale, D. Ballarini, L. Dominici, M. De Giorgi, M. Liscidini, D. Gerace, D. Sanvitto, G. Gigli, Opt. Lett. 39, 2068 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    M. Notomi, A. Shinya, A. Mitsugi, S. Kuramochi, H.Y. Ryu, Opt. Express 12, 551 (2004)Google Scholar
  30. 30.
    S.J. McNab, N. Moll, Y.A. Vlasov, Opt. Express 11, 2927 (2003)Google Scholar
  31. 31.
    Y. Sugimoto, Y. Tanaka, N. Ikeda, Y. Nakamura, K. Asakawa, K. Inoue, Opt. Express 12, 1090 (2004)ADSCrossRefGoogle Scholar
  32. 32.
    L. O’Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R.M. De La Rue, T.F. Krauss, Electron. Lett. 42, 1454 (2006)CrossRefGoogle Scholar
  33. 33.
    Y. Takahashi, H. Hagino, Y. Tanaka, B.S. Song, T. Asano, S. Noda, Opt. Express 15, 17206 (2007)ADSCrossRefGoogle Scholar
  34. 34.
    M. Notomi, Rep. Prog. Phys. 73, 096501 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 2008)MATHGoogle Scholar
  36. 36.
    K. Aoki, D. Guimard, M. Nishioka, M. Nomura, S. Iwamoto, Y. Arakawa, Nat. Photon. 2, 688 (2008)ADSCrossRefGoogle Scholar
  37. 37.
    J.M. van den Broek, L.A. Woldering, R.W. Tjerkstra, F.B. Segerink, I.D. Setija, W.L. Vos, Adv. Mater. 22, 25 (2012)Google Scholar
  38. 38.
    T. Ochiai, K. Sakoda, Phys. Rev. B 64, 045108 (2001)Google Scholar
  39. 39.
    L.C. Andreani, D. Gerace, Phys. Rev. B 73, 235114 (2006)ADSCrossRefGoogle Scholar
  40. 40.
    A. Yariv, P. Yeh, Photonics: Optical electronics in modern communications (Oxford University Press, New York, 2007)Google Scholar
  41. 41.
    D. Gerace, L.C. Andreani, Opt. Lett. 29, 1897 (2004)ADSCrossRefGoogle Scholar
  42. 42.
    Y. Akahane, T. Asano, B.S. Song, S. Noda, Nature 425, 944 (2003)Google Scholar
  43. 43.
    L.C. Andreani, D. Gerace, M. Agio, Photon. Nanostruct. Fundam. Appl. 2, 103 (2004)ADSCrossRefGoogle Scholar
  44. 44.
    H. Sekoguchi, Y. Takahashi, T. Asano, S. Noda, Opt. Express 22, 916 (2014)ADSCrossRefGoogle Scholar
  45. 45.
    Y. Lai, S. Pirotta, G. Urbinati, D. Gerace, M. Minkov, V. Savona, A. Badolato, M. Galli, Appl. Phys. Lett. (to be published, May 2014)Google Scholar
  46. 46.
    S. Combrié, A. De Rossi, Q.V. Tran, H. Benisty, Opt. Letters 33, 1908 (2008)Google Scholar
  47. 47.
    N.-V.-Q. Tran, S. Combrié, A. De Rossi, Phys. Rev. B 79, 041101(R) (2009)ADSCrossRefGoogle Scholar
  48. 48.
    S.L. Portalupi, M. Galli, C. Reardon, T.F. Krauss, L. O’Faolain, L.C. Andreani, D. Gerace, Opt. Express 18, 16064 (2010)ADSCrossRefGoogle Scholar
  49. 49.
    D. Gerace, L.C. Andreani, Phys. Rev. B 75, 235325 (2007)ADSCrossRefGoogle Scholar
  50. 50.
    J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J.M.J. Keeling, F.M. Marchetti, M.H. Szymańska, R. André, J.L. Staehli, V. Savona, P.B. Littlewood, B. Deveaud, L.S. Dang, Nature 443, 409 (2006)Google Scholar
  51. 51.
    D. Bajoni, D. Gerace, M. Galli, J. Bloch, R. Braive, I. Sagnes, A. Miard, A. Lemaître, M. Patrini, L.C. Andreani, Phys. Rev. B 80, 201308(R) (2009)ADSCrossRefGoogle Scholar
  52. 52.
    S. Azzini, D. Gerace, M. Galli, I. Sagnes, R. Braive, A. Lemaître, J. Bloch, D. Bajoni, Appl. Phys. Lett. 99, 111106 (2011)ADSCrossRefGoogle Scholar
  53. 53.
    A. Faraon, C. Santori, Z. Huang, V.M. Acosta, R.G. Beausoleil, Phys. Rev. Lett. 109, 033604 (2012)Google Scholar
  54. 54.
    D. Englund, I. Fushman, A. Faraon, J. Vučković, Photon. Nanostruct. Fundam. Appl. 7, 56 (2009)ADSCrossRefGoogle Scholar
  55. 55.
    R. Bose, D. Sridharan, G. Solomon, E. Waks, Opt. Express 19, 5398 (2011)ADSCrossRefGoogle Scholar
  56. 56.
    N. Caselli, F. Intonti, F. Riboli, A. Vinattieri, D. Gerace, L. Balet, L.H. Li, M. Francardi, A. Gerardino, A. Fiore, M. Gurioli, Phys. Rev. B 86, 035133 (2012)Google Scholar
  57. 57.
    A. Majumdar, A. Rundquist, M. Bajcsy, V.D. Dasika, S.R. Bank, J. Vučković, Phys. Rev. B 86, 195312 (2012)ADSCrossRefGoogle Scholar
  58. 58.
    N. Caselli, F. Intonti, C. Bianchi, F. Riboli, S. Vignolini, L. Balet, L.H. Li, M. Francardi, A. Gerardino, A. Fiore, M. Gurioli, Appl. Phys. Lett. 101, 211108 (2013)Google Scholar
  59. 59.
    T. Cai, R. Bose, G.S. Solomon, E. Waks, Appl. Phys. Lett. 102, v141118 (2013)Google Scholar
  60. 60.
    R. Boyd, Nonlinear Optics (Academic Press, California, 1992)Google Scholar
  61. 61.
    P.D. Drummond, D.F. Walls, J. Phys. A 13, 725 (1980)ADSCrossRefGoogle Scholar
  62. 62.
    S. Ferretti, D. Gerace, Phys. Rev. B 85, 033303 (2012)ADSCrossRefGoogle Scholar
  63. 63.
    M.J. Werner, A. Imamoǧlu, Phys. Rev. A 61, 011801(R) (1999)Google Scholar
  64. 64.
    R. Loudon, The Quantum Theory of Light (Oxford University Press, Oxford, 2003)MATHGoogle Scholar
  65. 65.
    M. Galli, D. Gerace, K. Welna, T.F. Krauss, L. O’Faolain, G. Guizzetti, L.C. Andreani, Opt. Express 18, 26613 (2010)ADSCrossRefGoogle Scholar
  66. 66.
    L. Tian, H.J. Carmichael, Phys. Rev. A 46, 6801(R) (1992)Google Scholar
  67. 67.
    E.T. Jaynes, F.W. Cummings, Proc. IEEE 51, 89 (1963)Google Scholar
  68. 68.
    L.C. Andreani, G. Panzarini, J.-M. Gérard, Phys. Rev. B 60, 13276 (1999)ADSCrossRefGoogle Scholar
  69. 69.
    S. Rebić, A.S. Parkins, S.M. Tan, Phys. Rev. A 69, 035804 (2004)ADSCrossRefGoogle Scholar
  70. 70.
    K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gülde, S. Fält, E. Hu, A. Imamoǧlu, Nature 445, 896 (2007)ADSCrossRefGoogle Scholar
  71. 71.
    A. Verger, C. Ciuti, I. Carusotto, Phys. Rev. B 73, 193306 (2006)ADSCrossRefGoogle Scholar
  72. 72.
    I. Carusotto, T. Volz, A. Imamoǧlu, Europhys. Lett. 90, 37001 (2010)ADSCrossRefGoogle Scholar
  73. 73.
    A. Majumdar, D. Gerace, Phys. Rev. B 87, 235319 (2013)ADSCrossRefGoogle Scholar
  74. 74.
    T.C.H. Liew, V. Savona, Phys. Rev. Lett. 104, 183601 (2010)ADSCrossRefGoogle Scholar
  75. 75.
    M. Bamba, A. Imamoǧlu, I. Carusotto, C. Ciuti, Phys. Rev. A 83, 021802(R) (2011)ADSCrossRefGoogle Scholar
  76. 76.
    H.J. Carmichael, An Open Systems Approach to Quantum Optics (Springer, Berlin, 1993)MATHGoogle Scholar
  77. 77.
    T. Grujic, S.R. Clark, D. Jaksch, D.G. Angelakis, New J. Phys. 14, 103025 (2012)CrossRefGoogle Scholar
  78. 78.
    F. Nissen, S. Schmidt, M. Biondi, G. Blatter, H.E. Türeci, J. Keeling, Phys. Rev. Lett. 108, 233603 (2012)ADSCrossRefGoogle Scholar
  79. 79.
    A. Tomadin, V. Giovannetti, R. Fazio, D. Gerace, I. Carusotto, H.E. Türeci, A. Imamoǧlu, Phys. Rev. A 81, 061801(R) (2010)ADSCrossRefGoogle Scholar
  80. 80.
    A. La Boité, G. Orso, C. Ciuti, Phys. Rev. Lett. 110, 233601 (2013)ADSCrossRefGoogle Scholar
  81. 81.
    K.A. Matveev, M. Gisselfält, L.I. Glazman, M. Jonson, R.I. Shekhter, Phys. Rev. Lett. 70, 2940 (1993)Google Scholar
  82. 82.
    P. Joyez, P. Lafarge, A. Filipe, D. Esteve, M.H. Devoret, Phys. Rev. Lett. 72, 2458 (1994)Google Scholar
  83. 83.
    L.J. Geerligs, L.E.M. de Groot, A. Verbruggen, J.E. Mooji, Phys. Rev. Lett. 63, 326 (1989)ADSCrossRefGoogle Scholar
  84. 84.
    W.J. Elion, M. Matters, U. Geigenmüller, J.E. Mooji, Nature 371, 594 (1994)ADSCrossRefGoogle Scholar
  85. 85.
    S. Ferretti, L.C. Andreani, H.E. Türeci, D. Gerace, Phys. Rev. A 82, 013841 (2010)ADSCrossRefGoogle Scholar
  86. 86.
    E.H. Lieb, W. Liniger, Phys. Rev. 130, 1605 (1963)ADSMathSciNetCrossRefGoogle Scholar
  87. 87.
    I. Carusotto, Y. Castin, New J. Phys. 5, 91 (2003)ADSCrossRefGoogle Scholar
  88. 88.
    M.J. Hartmann, Phys. Rev. Lett. 104, 113601 (2010)ADSCrossRefGoogle Scholar
  89. 89.
    R.O. Umucalilar, I. Carusotto, Phys. Rev. Lett. 108, 206809 (2012)ADSCrossRefGoogle Scholar
  90. 90.
    C.E. Bardyn, A. Imamoǧlu, Phys. Rev. Lett. 109, 253606 (2012)ADSCrossRefGoogle Scholar
  91. 91.
    T.C.H. Liew, V. Savona, New J. Phys. 15, 025015 (2013)ADSMathSciNetCrossRefGoogle Scholar
  92. 92.
    A.A. Houck, H.E. Türeci, J. Koch, Nat. Phys. 8, 292 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Dipartimento di FisicaUniversità di PaviaPaviaItaly
  2. 2.Laboratoire Matériaux et Phénomènes QuantiquesUniversité Paris Diderot-Paris 7Paris Cedex 13France
  3. 3.INO-CNR BEC Center and Dipartimento di FisicaUniversità di TrentoPovoItaly

Personalised recommendations