Skip to main content

Strongly Correlated Polaritons in Nonlinear Cavity Arrays

  • Chapter
  • First Online:
Quantum Simulations with Photons and Polaritons

Part of the book series: Quantum Science and Technology ((QST))

  • 2095 Accesses

Abstract

Arrays of coupled QED cavities have been proposed as promising candidates to study hybrid many-body states of light and matter in a controlled way. The rich scenario emerging in these systems stems from the interplay between intra-cavity light-matter interaction and inter-cavity photon hopping. Coherent light-matter interaction generates polaritonic excitations with physical properties resembling those of bosonic particles in a lattice. We review the most salient features of the zero-temperature equilibrium phase diagram of a polaritonic lattice model, focusing on a quantitative analysis for the one-dimensional case. A judicious analysis of the system, however, cannot neglect the effect of losses and decoherence of both light and matter components of the polaritonic excitation. External driving is typically needed to counteract such losses. In this case, the knowledge of the equilibrium phase diagram is not sufficient to describe the state of the system during its time-evolution, and its possible approach to the steady state. For this reason, we also discuss the nonequilibrium dynamics resulting from the interplay between losses and external driving in some relevant cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This procedure is formally equivalent to finding the critical hopping \(J^\star \) at which, in the grand canonical ensemble, the critical chemical potentials \(\mu _\mathrm{c}^\pm (\rho , J)\) of Eq. (1.14) coincide.

References

  1. C. Ciuti, I. Carusotto, Rev. Mod. Phys. 85, 299 (2013)

    Article  ADS  Google Scholar 

  2. M.J. Hartmann, F.G.S.L. Brandão, M.B. Plenio, Laser Photon. Rev. 2, 527 (2008)

    Article  Google Scholar 

  3. A. Tomadin, R. Fazio, J. Opt. Soc. Am. B 27, A130 (2010)

    Article  ADS  Google Scholar 

  4. A.A. Houck, H.E. Türeci, J. Koch, Nature Phys. 8, 292 (2012)

    Article  ADS  Google Scholar 

  5. S. Schmidt, J. Koch, Ann. der Physik 525, 395 (2013)

    Article  ADS  Google Scholar 

  6. S.M. Barnett, P.M. Radmore, Methods in Theoretical Quantum Optics (Clarendon Press, Oxford, 1997)

    MATH  Google Scholar 

  7. A. Imamoğlu, H. Schmidt, G. Woods, M. Deutsch, Phys. Rev. Lett. 79, 1467 (1997)

    Article  ADS  Google Scholar 

  8. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Harcourt, Orlando, 1976)

    MATH  Google Scholar 

  9. D.F. Walls, G.J. Milburn, Quantum Optics (Springer-Verlag, Berlin, 1994)

    Book  MATH  Google Scholar 

  10. N. Marzari, A.A. Mostofi, J.R. Yates, I. Souza, D. Vanderbilt, Rev. Mod. Phys. 84, 1419 (2012)

    Article  ADS  Google Scholar 

  11. A.L. Fetter, J.D. Walecka, Quantum Theory of Many-Particle Systems (Dover, New York, 2003)

    MATH  Google Scholar 

  12. M. Lewenstein, A. Sanpera, V. Ahufinger, Ultracold Atoms in Optical Lattices (Oxford University Press, USA, 2012)

    Book  MATH  Google Scholar 

  13. M.J. Hartmann, F.G.S.L. Brandão, M.B. Plenio, Nature Phys. 2, 849 (2006)

    Article  ADS  Google Scholar 

  14. A.D. Greentree, C. Tahan, J.H. Cole, L. Hollenberg, Nature Phys. 2, 856 (2006)

    Article  ADS  Google Scholar 

  15. D. Angelakis, M. Santos, S. Bose, Phys. Rev. A 76, 031805 (2007)

    Article  ADS  Google Scholar 

  16. H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, USA, 2002)

    MATH  Google Scholar 

  17. L.D. Landau, E.M. Lifshitz, Statistical Physics (Pergamon Press, Oxford, 1980)

    MATH  Google Scholar 

  18. H. Carmichael, An Open Systems Approach to Quantum Optics (Springer-Verlag, Berlin, 1993)

    MATH  Google Scholar 

  19. N. Na, S. Utsunomiya, L. Tian, Y. Yamamoto, Phys. Rev. A 77, 031803(R) (2007)

    Article  ADS  Google Scholar 

  20. S. Schmidt, G. Blatter, Phys. Rev. Lett. 103, 086403 (2009)

    Article  ADS  Google Scholar 

  21. M. Aichhorn, M. Hohenadler, C. Tahan, P. Littlewood, Phys. Rev. Lett. 100, 216401 (2008)

    Article  ADS  Google Scholar 

  22. P. Pippan, H. Evertz, M. Hohenadler, Phys. Rev. A 80, 033612 (2009)

    Article  ADS  Google Scholar 

  23. M. Hohenadler, M. Aichhorn, S. Schmidt, L. Pollet, Phys. Rev. A 84, 041608(R) (2011)

    Article  ADS  Google Scholar 

  24. M. Hohenadler, M. Aichhorn, L. Pollet, S. Schmidt, Phys. Rev. A 85, 013810 (2012)

    Article  ADS  Google Scholar 

  25. D. Rossini, R. Fazio, Phys. Rev. Lett. 99, 186401 (2007)

    Article  ADS  Google Scholar 

  26. D. Rossini, R. Fazio, G. Santoro, Europhys. Lett. 83, 47011 (2008)

    Article  ADS  Google Scholar 

  27. M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, A. Sen(De), and U. Sen. Adv. Phys. 56, 243 (2007)

    Article  ADS  Google Scholar 

  28. I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008)

    Article  ADS  Google Scholar 

  29. K. Toyoda, Y. Matsuno, A. Noguchi, S. Haze, S. Urabe, Phys. Rev. Lett. 111, 160501 (2013)

    Article  ADS  Google Scholar 

  30. U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  31. T.D. Kühner, H. Monien, Phys. Rev. B 58, 14741(R) (1998)

    Article  ADS  Google Scholar 

  32. T.D. Kühner, S.R. White, H. Monien. Phys. Rev. B 61, 12474 (2000)

    Article  ADS  Google Scholar 

  33. J.K. Freericks, H. Monien, Phys. Rev. B 53, 2691 (1996)

    Article  ADS  Google Scholar 

  34. M.P.A. Fisher, P.B. Weichman, G. Grinstein, D.S. Fisher, Phys. Rev. B 40, 546 (1989)

    Article  ADS  Google Scholar 

  35. A. Tomadin, V. Giovannetti, R. Fazio, D. Gerace, I. Carusotto, H.E. Türeci, A. Imamoğlu, Phys. Rev. A 81, 061801(R) (2010)

    Article  ADS  Google Scholar 

  36. F. Verstraete, J.J. García-Ripoll, J.I. Cirac, Phys. Rev. Lett. 93, 207204 (2004)

    Article  ADS  Google Scholar 

  37. M. Zwolak, G. Vidal, Phys. Rev. Lett. 93, 207205 (2004)

    Article  ADS  Google Scholar 

  38. S. Diehl, A. Micheli, A. Kantian, B. Kraus, H.P. Büchler, P. Zoller, Nature Phys. 4, 878 (2008)

    Article  ADS  Google Scholar 

  39. D. Marcos, A. Tomadin, S. Diehl, P. Rabl, New J. Phys. 14, 055005 (2012)

    Article  ADS  Google Scholar 

  40. J. Klaers, J. Schmitt, F. Vewinger, M. Weitz, Nature 468, 545 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge the EU (through IP-SIQS and STREP-TermiQ) and the Italian MIUR through FIRB (Project RBFR12NLNA) and PRIN (Project 2010LLKJBX), for financial support. We would also acknowledge a fruitful collaboration on the topics discussed in this chapter with I. Carusotto, S. Diehl, D. Gerace, V. Giovannetti, A. Imamoğlu, D. Marcos, P. Rabl, G. Santoro, and H. Türeci.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Rossini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Tomadin, A., Rossini, D., Fazio, R. (2017). Strongly Correlated Polaritons in Nonlinear Cavity Arrays. In: Angelakis, D. (eds) Quantum Simulations with Photons and Polaritons. Quantum Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-52025-4_1

Download citation

Publish with us

Policies and ethics