Skip to main content

Non-traditional Micromachining Processes: Opportunities and Challenges

  • Chapter
  • First Online:
Non-traditional Micromachining Processes

Part of the book series: Materials Forming, Machining and Tribology ((MFMT))

Abstract

The high demand and stringent design requirements in developing fields of microengineering as well as various needs of society and nation require the utilization of suitable techniques of non-traditional machining processes on different existing and newly developed metals, non metals, alloys, polymers, ceramics, rubber and composites, etc. Presently, nontraditional machining techniques have expanded their applicability in the field of micromachining and offer better opportunities with several inherent advantages that make these processes superior as well as more efficient than conventional one. Non-traditional mechanical micromachining processes include abrasive jet machining (AJM), water jet machining (WJM), ultrasonic machining (USM), ion beam machining (IBM), etc. Non-traditional thermal micromachining processes include micromachining by electro discharge machining (EDM), laser beam machining (LBM), electron beam machining (EBM), etc. Non-traditional chemical and electrochemical micromachining processes have been used successfully to generate micro features of high quality. Hybrid micromachining can also be utilized effectively for generating more intricate shapes and complex parts. Advanced finishing processes using non-traditional machining like abrasive flow finishing (AFF), magnetic abrasive finishing (MAF), etc. are also gaining popularity to cope up the steep demand in finishing intricate, complex, durable and sophisticated shapes that are highly economical and posses better surface quality and property. The opportunities and challenges of each non-traditional micromachining and finishing processes are to be investigated considering various practical applications in different micro engineering fields. These non-traditional micromachining techniques as well as advanced finishing processes can be improved further and utilized more successfully in the near future for numerous microengineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu X., DeVor R.E., Kapoor S.G., Ehmann K.F., The mechanics of machining at the micro-scale: assessment of the current state of the science, J. Manuf. Sci. Eng. 126 (2004) 666–678.

    Google Scholar 

  2. Mecomber J. S., Hurd D., Limbach P.A., Enhanced machining of micron-scale features in microchip molding masters by CNC milling, International Journal of Machine Tools & Manufacture 45(2005) 1542–1550.

    Google Scholar 

  3. Chae J., Park S.S., Freiheit T., Investigation of micro-cutting operations, International Journal of Machine Tools & Manufacture 46(2006) 313–332.

    Google Scholar 

  4. Filiz S., Conley C.M., Wasserman M.B., Burak Ozdoganlar N., An experimental investigation of micromachinability of copper 101 using tungsten carbide micro-endmills, International Journal of Machine Tools and Manufacture 47(2007)1088–1100.

    Google Scholar 

  5. Masuzawa T., State of the art of micromachining, Annals of the CIRP 49 (2000) 473–488.

    Google Scholar 

  6. Benedict G. F., Non-traditional Manufacturing Processes, Marcel Dekker Inc., New York, 1987.

    Google Scholar 

  7. Getu H., Ghobeity A., Spelt J.K., Papini M., Abrasive jet micromachining of polymethylmethacrylate, Wear 263(2007)1008–1015.

    Google Scholar 

  8. Getu H., Ghobeity A., Spelt J. K., Papini M., Abrasive jet micromachining of acrylic and polycarbonate polymers at oblique angles of attack, Wear doi:10.1016/j.wear.2008.01.013.

  9. Belloy E., Thurre S., Walckiers E., Sayah A., Gijs, M. A. M., The introduction of powder blasting for sensor and microsystems applications, Sens. Actuators: A: Phys. 84 (2000) 330–337.

    Google Scholar 

  10. Pawlowski A., Belloy E., Sayah A., Gijs M. A. M., Powder blasting patterning technology for microfabrication of complex suspended structures in glass, Microelectronic Engineering 67-68 (2003) 557–565.

    Google Scholar 

  11. Cooley W.E., Clipp L.L, High pressure water jets for undersea rock excavation, Journal of Engineering for Industry, Trans. ASME, Series B 92(1970)281.

    Google Scholar 

  12. Sun X. Q., Masuzawa T., Fujino M., Micro ultrasonic machining and its applications in MEMS, Sensors and Actuators, A 57(1996)159–164.

    Google Scholar 

  13. Egashira K., Masuzawa T., Fujino M., Sun, X. Q., Application of USM to micromachining by on-the-machine tool fabrication, International Journal of Electrical Machining, IJEM, 2(1997)31–36.

    Google Scholar 

  14. Tseng A. A., Topical review: Recent developments in micro milling using focused ion beam technology, Journal of Micromechanics and Micro engineering 14(2004)R15-R34.

    Google Scholar 

  15. Vasile M. J. et al., Micro fabrication techniques using focused ion beam and emergent applications, Micron 30(1999) 235–244.

    Google Scholar 

  16. Jain R.K., Jain V. K., Abrasive Fine Finishing Process-A Review, The Intl. J. Mfg. Sc. Prod. 2(1999)55–68.

    Google Scholar 

  17. Shinmura T., Takazawa K., Hatano E. Study on Magnetic Abrasive Finishing, Annals CIRP 39(1990)325–328.

    Google Scholar 

  18. Puranik M. S., Joshi S. S., Analysis of accuracy of high-speed aspect ratio holes generated using micro-EDM drilling, Proceedings of Institution of Mechanical Engineering, Part B, Journal of Engineering Manufacture 222 (2008)1453–1464.

    Google Scholar 

  19. Alemohammad H. Toyserkani E. Pinkerton A.J., Femtosecond laser micromachining of fiber Bragg gratings for simultaneous measurement of temperature and concentration of liquids, Journal of physics D: Applied Physics 41 (2008) 1–9.

    Google Scholar 

  20. Sugioka K. Cheng Y, Midorikawa K., Three-dimensional micromachining of glass using femtosecond laser for lab-on-a-chip device manufacture, Applied Physics A 81(2005) 1–10.

    Google Scholar 

  21. Rathod V., Doloi B., Bhattacharyya B., Influence of electrochemical micromachining parameters during generation of microgrooves, Int J Adv Manuf Technol. 76(2015)51–60.

    Google Scholar 

  22. Ghoshal B., Bhattacharyya B., Shape control in micro borehole generation by EMM with the assistance of vibration of tool, Precision Engineering 38 (2014) 127–137.

    Google Scholar 

  23. McGeough J.A, (Ed.), Micromachining of Engineering Materials, Marcel Dekker Inc, NY (USA) 2002.

    Google Scholar 

  24. Bhattacharyya B., Electrochemical Micromachining for Nanofabrication, MEMS and Nanotechnology, William Andrew Applied Science Publishers, Imprint of Elsevier Inc., Massachusetts, pp. 270, 2015.

    Google Scholar 

  25. Egashira K., Masuzawa T., Microultrasonic machining by the application of workpiece vibration, CIRP Annals—Manufacturing Technology 48(1999)131–134.

    Google Scholar 

  26. Egashira K., Mizutani K., Micro-drilling of Monocrystalline Silicon Using a Cutting Tool, Precision Engineering 26(2002)263–268.

    Google Scholar 

  27. Egashira K., Masuzawa T., Fujino M., Sun X. Q., Application of USM to micromachining by on-the-machine tool fabrication, International Journal of Electrical Machining 2(1997) 31–36.

    Google Scholar 

  28. Komaraiah M., Reddy P. N., A study on the influence of work piece properties in ultrasonic machining, International Journal of Machine Tools and Manufacture 33(1993) 495–505.

    Google Scholar 

  29. Singh R., Khamba J. S., Ultrasonic machining of titanium and its alloys: a review, Journal of Materials Processing Technology 173(2006)125–135.

    Google Scholar 

  30. Egashira K., Taniguchi T., Tsuchiya H., Miyazaki M., Microultrasonic machining using multitools, in Proceedings of the 7th International Conference on Progress Machining Technology (ICPMT ‘04), pp. 297–301, December 2004.

    Google Scholar 

  31. Sun X. Q., Masuzawa T., Fujino M., Micro ultrasonic machining and its applications in MEMS, Sensors and Actuators A 57(1996)159–164.

    Google Scholar 

  32. Sun X. Q., Masuzawa T., Fujino M., Micro ultrasonic machining and self-aligned multilayer machining/assembly technologies for 3D micromachines, in Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS’96), pp. 312–317, 1996.

    Google Scholar 

  33. Boy J. J., Andrey E., Boulouize A., Khan-Malek C., Developments in microultrasonic machining (MUSM) at FEMTO-ST, International Journal of Advanced Manufacturing Technology 47(2010)37–45.

    Google Scholar 

  34. Yu Z. Y., Rajurkar K. P., Tandon A., Study of 3D microultrasonic machining, Journal of Manufacturing Science and Engineering, Transactions of the ASME 126(2004)727–732.

    Google Scholar 

  35. Zhang C., Rentsch R., Brinksmeier E., Advances in micro ultrasonic assisted lapping of microstructures in hard-brittle materials: a brief review and outlook, International Journal of Machine Tools and Manufacture 45(2005)881–890.

    Google Scholar 

  36. Curodeau A., Guay J., Rodrigue D., Brault L., Gagn´e D., Beaudoin L. P., Ultrasonic abrasive μ-machining with thermoplastic tooling, International Journal of Machine Tools and Manufacture 48 (2008) 1553–1561.

    Google Scholar 

  37. Jameson E.C., Description and development of electrical discharge machining (EDM), in: Electrical Discharge Machining, Society of Manufacturing Engineers, Dearbern, Michigan, pp. 12, 2001.

    Google Scholar 

  38. Allen D.M., Lecheheb A., Micro electro-discharge machining of ink jet nozzles: optimum selection of material and machining parameters, Journal of Materials Processing Technology 58 (1996) 53–66.

    Google Scholar 

  39. Newman S. T., Ho K. H., The state of art – Electrical discharge machining, International Journal of machine Tools and Manufacture 43 (2003)1287–1300.

    Google Scholar 

  40. Koch O., Ehrfeld W., Michel F., Gruber H. P., Recent progress in micro-electro discharge machining technology – Part 1, Proceedings of the 13th International Symposium for Electromachining ISEM XIII, Bilbao, Spain, 2001.

    Google Scholar 

  41. Takezawa H., Hamamatsu H., Mohri N., Saito N., Development of micro-EDM with rapidly sharpened electrode, Journal of Materials Processing Technology 149(2004)112–116.

    Google Scholar 

  42. Imai Y., Nakagawa T., Miyake H., Hidai H., Tokura H., Local actuator module for highly accurate micro-EDM, Journal of Materials Processing Technology 149(2004) 328–333

    Google Scholar 

  43. Yan B. H., Wang A. C., Huang C.Y., Huang F.Y., Study of precision micro-holes in borosilicate glass using micro-EDM combined with micro ultrasonic vibration machining, International Journal of machine Tools and Manufacture 42(2002)1105–1112

    Google Scholar 

  44. Chern G., Wu Y. E., Liu S., Development of micro-punching machine and study on the influence of vibration machining in micro-EDM, Journal of Materials Processing Technology, 180(2006)102–109.

    Google Scholar 

  45. Hung J. C., Ling J. K., Yan B. H., Liu H. S., Ho P. H., Using a helical micro-tool in micro-EDM combined with ultrasonic vibration for micro-hole machining, Journal of Micromechanics and Microengineering 16(2006) 2705–2713.

    Google Scholar 

  46. Aspiwall D. K., Soo S. L., Berrisford A. E., Walder G., Workpiece Surface Roughness and Integrity after WEDM of Ti-6Al-4 V and Inconel 718 Using Minimum Damage Generator Technology, CIRP Annals - Manufacturing Technology 57(2008) 187–190.

    Google Scholar 

  47. Patel K.M., Pandey P.M., Rao P. V., Surface integrity and material removal mechanisms associated with the EDM of Al2O3 ceramic composite, International Journal of Refractory Metals and Hard Materials 27(2009) 892–899.

    Google Scholar 

  48. Jahan M.P., Rahman M., Wong Y.S., Fuhua L., On-machine fabrication of high- aspect-ratio microelectrodes and application in vibration-assisted micro- EDM drilling of tungsten carbide, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 224 (2010) 795–814.

    Google Scholar 

  49. Takahata K., Shibaike N., Guckel H., High-aspect-ratio WC–Co microstructure produced by the combination of LIGA and micro-EDM, Microsystem Technologies 6 (2000) 175–178.

    Google Scholar 

  50. Liu K., Lauwers B., Reynaerts D., Process capabilities of Micro-EDM and its applications, The International Journal of Advanced Manufacturing Technology 47(2010) 11–19.

    Google Scholar 

  51. Liao Y.S. et al., Fabrication of high aspect ratio microstructure arrays by micro reverse wire-EDM, Journal of Micromechanics and Microengineering 15(2005) 1547.

    Google Scholar 

  52. Lin C.S. et al., Fabrication of micro ball joint by using micro- EDM and electroforming, Microelectronic Engineering 87(2010) 1475–1478.

    Google Scholar 

  53. Gao G., Zhao W., Wang Z., Gou Y., Instantaneous fabrication of tungsten microelectrode based on single electrical discharge, Journal of Materials Processing Technology 168(2005) 83–88.

    Google Scholar 

  54. Sen A., Doloi B., Bhattacharyya B., Experimental Studies on Fibre Laser Micromachining of Ti-6Al-4V. 5th International & 26th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014) December 14th, 2014.

    Google Scholar 

  55. Föehl C., Dausinger F., High precision deep drilling with ultra short pulses, Proceedings of SPIE2003; 5063: 346–51.

    Google Scholar 

  56. Dausinger F., Hugel H., Konov VI., Micromachining with ultra short laser pulses: from basic understanding to technical applications, Proceedings of SPIE 2003; 5147: 106–15.

    Google Scholar 

  57. Meijer J., Laser beam machining (LBM) state of the art and new opportunities, J Mater Process Technol 149 (2004)2–17.

    Google Scholar 

  58. Breitling D., Ruf A., Dausinger F., Fundamental aspects in machining of metals with short and ultra short laser pulses, Proceedings of SPIE 2004; 5339: 49–63.

    Google Scholar 

  59. Rizvi N.H., Femtosecond laser micromachining: current status and applications, Riken Review 50(2003) 107–112.

    Google Scholar 

  60. Loeschner U., Mauersberger S., Ebert R. et al., Micromachining of glass with short ns-pulses and highly repetitive fs-laser pulses, in Proceedings of the 27th International Congress on Applications of Lasers and Electro-Optics (ICALEO ’08), pp. 193–201, October 2008.

    Google Scholar 

  61. Rizvi N., Femtosecond Laser Micromachining: Current Status and Applications. Riken Rev 50(2003) 77–82.

    Google Scholar 

  62. Gower M. C., Industrial application of laser micromachining, Opt Express 7(2000) 56–67.

    Google Scholar 

  63. Mishra S., Yadava V., Laser Beam Micro Machining (LBMM) – A review, Optics and Lasers in Engineering 73(2015) 89–122

    Google Scholar 

  64. Ren J., Kelly M., Hesselink L., Laser ablation of silicon in water with nanosecond and femtosecond pulses, Optics Letters 30(2005) 1740–1742.

    Google Scholar 

  65. Kruusing A., Underwater and water-assisted laser processing: part 2—etching, cutting and rarely used methods, Optics and Lasers in Engineering 41(2004) 329–352.

    Google Scholar 

  66. Tao Y. L., Chen H., Zhang W., Time scale effects in laser material removal: a review, Int J Adv Manuf Technol 26(2005) 598–608.

    Google Scholar 

  67. Hanemann T., Pfleging W., Haubelt J., Gahr K. H. Z., Laser micromachining and light induced reaction injection molding as suitable process sequence for the rapid fabrication of micro component, Microsyst Technol 7(2002) 209–14.

    Google Scholar 

  68. Bhavsar S.N., Aravindan S., Rao P.V., A Critical Review on Microtools Fabrication by Focused Ion Beam (FIB) Technology, Proc. of the World Congress on Eng. (2009).

    Google Scholar 

  69. Raffa V., Castrataro P., Menciassi A., Dario P., Focused Ion Beam as a Scanning Probe: Methods and Applications, Applied NanoScience and Technology (2006) 361–412.

    Google Scholar 

  70. Lucille A., Stevie G., Fred A., Introduction to focused ion beams, instrumentation, theory, techniques and practice, Springer Inc, Boston, USA. 2005.

    Google Scholar 

  71. Sadoh T., Eguchi H., Kenjo A., Miyao M., Etching characteristics of SiO2 irradiated with focused ion beam, Nucl Instrum Meth B 206 (2003) 478.

    Google Scholar 

  72. Kang H.J., Ahn S.H., Lee J.S., Lee J.H., Surface modification of aluminum by nitrogen-ion implantation, Int J Precis Eng Man 7(2005) 1.

    Google Scholar 

  73. Villanueva G., Plaza J.A., Sanchez-Amores A., Bausells J., Martinez E., Samitier J., et al. Deep reactive ion etching and focused ion beam combination for nanotip fabrication, Mater Sci Eng C-Mater 26(2006) 164.

    Google Scholar 

  74. Venugopal G., Fabrication and Characteristics of Submicron Stacked-Junctions on Thin Graphite Flakes, J. Nanosci. Nanotechnol 11(2011) 1405–1408.

    Google Scholar 

  75. Park C.M., Bain J.A., Focused ion beam induced grain growth in magnetic materials for recording heads, J. Appl. Phys. 91(2002) 6380–6832.

    Google Scholar 

  76. Nastasi M., Mayer J.W., Hirvonen J.K., Ion- Solid Interactions: Fundamentals and Applications (Cambridge University Press, Cambridge, UK, 1996).

    Google Scholar 

  77. Nellen P.M., Callegari V., Bronnimann R., FIB-milling photonic structures and sputtering simulation, Microelectron Eng 83(2006)1805.

    Google Scholar 

  78. Miller M.K., Russell K.F., Atom probe specimen preparation with a dual beam SEM/FIB miller, Ultramicroscopy 107(2007)761.

    Google Scholar 

  79. Ali M.Y., Ong A.S., Fabricating micromilling tool using wire electrodischarge grinding and focused ion beam sputtering, Int J Precis Eng Man 31(2006)501.

    Google Scholar 

  80. Hopman W.C.L., Ay F., Hu W., Gadgil V.J, Kuipers L., Pollnau M., et al. Focused ion beam scan routine, dwell time and dose optimizations for submicrometer period planar photonic crystal components and stamps in silicon, Nanotechnology 18(2007)195305.

    Google Scholar 

  81. Li W., Minev R., Dimov S., Lalev G., Patterning of amorphous and polycrystalline Ni78B14Si8 with a focused-ion-beam, Appl Surf Sci 253(2007)5404.

    Google Scholar 

  82. Malek C.K., Hartley F.T., Neogi J., Fast prototyping of high-aspect ratio, high resolution X-ray masks by gas-assisted focused ion beam, Microsyst Technol 9(2003)409.

    Google Scholar 

  83. Hosokawa H., Shimojima K., Chino Y., Yamada Y., Wen C.E., Mabuchi M., Fabrication of nanoscale Ti honeycombs by focused ion beam, Mater Sci Eng A-Struct 344(2003)365.

    Google Scholar 

  84. Youn S.W., Okuyama C., Takahashi M., Maeda R., A study on fabrication of silicon mold for polymer hot-embossing using focused ion beam milling, J Mater Process Tech 201(2008)548.

    Google Scholar 

  85. Li H.W., Kang D.J., Blamire M.G., Huck W.T.S., Focused ion beam fabrication of silicon print masters, Nanotechnology 14(2003)220.

    Google Scholar 

  86. Igaki J., Kometani R., Nakamatsu K., Kanda K., Haruyama Y., Ochiai Y., et al., Three dimensional rotor fabrication by focused-ion-beam chemical-vapor deposition, Microelectron Eng 83(2006)1221.

    Google Scholar 

  87. Kometani R., Funabiki R., Hoshino T., Kanda K., Haruyama Y., Kaito T., et al., Cell wall cutting tool and nano-net fabrication by FIB-CVD for sub-cellular operations and analysis, Microelectron Eng 83(2006)1642.

    Google Scholar 

  88. Reyntjens S., Puers R., A review of focused ion beam applications in microsystem technology, Journal of micromechanics and microengineering 11 (2001) 287–300

    Google Scholar 

  89. Fujii T., Iwasaski M., Munekane M., Takeuchi T., Hasuda M., Asahata T., et al., A nanofactory by focused ion beam, J Micromech Microeng 11(2005)S286.

    Google Scholar 

  90. Ding X., Lim G.C., Cheng C.K., Butler D.L., Shaw K.C., Liu K., Fong W.S., Fabrication of a micro-size diamond tool using a focused ion beam, J. Micromech. Microeng. 18 (2008).

    Google Scholar 

  91. Selada A., Manaia A., Vieira M.T., Pouzada A.S., Effect of LBM and large-area EBM finishing on micro-injection moulding surfaces, Int J Adv Manuf Technol 52 (2011) 171–182.

    Google Scholar 

  92. Desilets B. H., Mechanism of cavity formation in unfired ceramic by electron beam machining, Journal of vacuum science technology 15(1978)3.

    Google Scholar 

  93. Moarrefzadeh A., Finite-Element Simulation of Electron Beam Machining (EBM) Process, International Journal of Multidisciplinary Sciences And Engineering 2(2011).

    Google Scholar 

  94. Chryssolouris G., Anifantis N., Karagiannis S., Electron Assisted Machining: an Overview, ASME Journal of Manufacturing Science and Engineering 119 (1997) 766–769.

    Google Scholar 

  95. Biamino S., Penna A., Ackelid U., Sabbadini S., Tassa O., Fino P., Pavese M., Gennaro P., Badini C., Electron beam melting of Ti-48Al-2Cr-2Nb alloy: microstructure and mechanical properties investigation, Intermetallics 19 (2010) 776–781.

    Google Scholar 

  96. Uno Y., Okada A., Uemura K., Raharjo P., Sano S., Yu Z., Mishima S, A new polishing method of metal mold with large-area electron beam irradiation, J Mat Process Technol 187–188(2007) 77–80.

    Google Scholar 

  97. Utke, Hoffmann, and Melngailis, Gas-assisted focused electron beam and ion beam processing, J. Vac. Sci. Technol. 26(2008).

    Google Scholar 

  98. Jain V. K., Advanced Machining Processes, Allied Publishers, Delhi, 2002.

    Google Scholar 

  99. Blak J.T., et. al., DeGarmo’s Materials and Processes in Manufacturing, John Wiley & Sons, Inc, Tenth ed. 2007.

    Google Scholar 

  100. Drozda T.J., Tool and Manufacturing Engineers, Handbook (Chapter 14: Nontraditional Machining), SME Publishing, 1989.

    Google Scholar 

  101. Fadaei T. A., A New Etchant For The Chemical Machining of St304, Journal of Materials Processing Technology 149(2004) 404–408.

    Google Scholar 

  102. Al-Ethari A. H., Alsultani K. F., Dakhil N., Variables Affecting the Chemical Machining of Stainless Steel 420, International Journal of Engineering and Innovative Technology (IJEIT) 3(2013).

    Google Scholar 

  103. Allen D.M., Talib T.N., Manufacture of stainless steel edge filters: an application of electrolytic photopolishing, precision engineering (1983) 57–59.

    Google Scholar 

  104. Bhattacharyya B., Munda J., Malapati M., Advancement in electrochemical micro-machining, International Journal of Machine Tools & Manufacture 44 (2004) 1577–1589.

    Google Scholar 

  105. Lohrengel M. M., Kluppel I., Rosenkranz C., Bettermann H., Schultze J. W., Microscopic investigations of electrochemical machining of Fe in NaNO3, Electrochimia Acta 48 (2003) 3203–3211

    Google Scholar 

  106. Kozak J., Rajurkar K. P., Wei B., Modeling and analysis of pulse electrochemical machining, Transactions of ASME, 116 (1994) 316–323.

    Google Scholar 

  107. Munda J., Malapati M., Bhattacharyya B., Control of micro-spark and stray –current effect during EMM process, Journal of Materials Processing Technology 194(2007) 151–158.

    Google Scholar 

  108. Kock M., Kirchner V., Schuster R., Electrochemical micro machining with ultra short voltage pulses-a versatile method with lithographic precision, Electrochimia Acta 48(2003) 3213–3219.

    Google Scholar 

  109. Rathod V., Doloi B., Bhattacharyya B., Parametric Investigation into the Fabrication of Disk Microelectrodes by Electrochemical Micromachining, Journal of Micro- and Nano-Manufacturing, Vol. 1/ 041005-1-041005-11, December 2013

    Google Scholar 

  110. Wang J.J.J., et al., Fabrication of wedge-shape tool via electrochemical micromachining with diamond-like carbon coating, Journal of Materials Processing Technology 187–188[2007]264–269.

    Google Scholar 

  111. Landolt D., Chauvy P. F., Zinger O., Electrochemical micro machining, polishing and surface structuring of metals: fundamental aspects and new developments, Electrochimia Acta 48(2003) 3185–3201.

    Google Scholar 

  112. Datta M., Landolt D., Fundamental aspects and applications of electrochemical micro fabrication, Electrochimia Acta 45(2000) 2535–2558

    Google Scholar 

  113. Bassu M., Strambini L.M., Barillaro G., Advances in Electrochemical Micromachining of Silicon: Towards MEMS Fabrication, Procedia Engineering 25(2011) 1653–1656.

    Google Scholar 

  114. Munda J., Malapati M., Bhattacharyya B., Control of microspark and stray-current effect during EMM process, Journal of Materials Processing Technology 194(2007) 151–158.

    Google Scholar 

  115. Wang M., et al., Electrochemical machining of the spiral internal turbulator, International Journal of Advanced Manufacturing Technology 49(2010) 969–973.

    Google Scholar 

  116. Jo C.H., Kim B.H., Chu C.N., Micro electrochemical machining for complex internal micro features, CIRP Annals -Manufacturing Technology 58(2009) 181–184.

    Google Scholar 

  117. Bo Hyun K., Byung Jin P., Chong Nam C., Fabrication of multiple electrodes by reverse EDM and their application in micro ECM, Journal of Micromechanics and Microengineering 16(2006) 843.

    Google Scholar 

  118. Nguyen M.D., Rahman M., Wong Y.S., Enhanced surface integrity and dimensional accuracy by simultaneous micro- ED/EC milling, CIRP Annals - Manufacturing Technology 61(2012) 191–194.

    Google Scholar 

  119. Kunieda M., et al., Electrochemical micromachining using flat electrolyte jet, CIRP Annals - Manufacturing Technology 60(2011) 251–254.

    Google Scholar 

  120. Hong Shik S., Hyun K. B., Chong Nam C., Analysis of the side gap resulting from micro electrochemical machining with a tungsten wire and ultrashort voltage pulses, Journal of Micromechanics and Microengineering 18(2008)075009.

    Google Scholar 

  121. Kunieda M., Mizugai K., Watanabe S., Shibuya N., Iwamoto N., Electrochemical Micromachining using Flat Electrolyte Jet, CIRP Annals, Manufacturing Technology 60(2011) 251–254.

    Google Scholar 

  122. Zinger O., Chauvy P.F., Landolt D., Scale-Resolved Electrochemical Surface Structuring of Titanium for Biological Applications, J. Electrochem. Soc., 150(2003) B495.

    Google Scholar 

  123. Kock M., Kirchner V., Schuster R., Electrochemical Micromachining with Ultrashort Voltage Pulses - a Versatile Method with Lithographical Precision, Electrochemical Acta 48 (2003) 3213–3219.

    Google Scholar 

  124. Trimmer A. L., Hudson J. L., Kock M., Schuster R., Single-step Electrochemical Machining of Complex Nanostructures with Ultrashort Voltage Pulses, Applied Physics Letters 82 (2003) 3327–3329.

    Google Scholar 

  125. Karunakaran K., Pushpa V., Akula S., Suryakumar S., Techno-economic analysis of hybrid layered manufacturing, International Journal of Intelligent Systems Technologies and Applications 4(2008) 161–176.

    Google Scholar 

  126. Heisel U., Wallaschek J., Eisseler R., Potthast C., Ultrasonic deep hole drilling in electrolytic copper ECu 57, CIRP Annals-Manufacturing Technology 57(2008) 53–56.

    Google Scholar 

  127. Lauwers B., Klocke F., Klink A., Hybrid processes in manufacturing, CIRP Ann-Manuf Techn 63(2014) 561–583.

    Google Scholar 

  128. Curtis D.T., Soo S.L., Aspinwall D.K., Electrochemical superabrasive machining of a nickel-based aeroengine alloy using mounted grinding points, CIRP Ann-Manuf Techn 58(2009) 173–176.

    Google Scholar 

  129. Tehrani A.F., Atkinson J., Overcut in pulsed electrochemical grinding, P I Mech Eng B-J Eng 214(2000) 259–269.

    Google Scholar 

  130. Bhattacharyya B., Doloi B., Sorkhel S.K, Experimental investigations into electrochemical discharge machining (ECDM) of non-conductive ceramic material, Journal of Materials Processing Technology 95(1999) 145–154.

    Google Scholar 

  131. Jain V.K., Adhikary S., On the mechanism of material removal in electrochemical spark machining of quartz under different polarity conditions, Journal of Materials Processing Technology 200(2008) 460–470.

    Google Scholar 

  132. Allesu K., Ghosh A., Muju M.K., Preliminary qualitative approach of a proposed mechanism of material removal in electrical machining of glass, Eur. J. Mech. Eng. 36 (1992) 202–207.

    Google Scholar 

  133. Fascio V., Wüthrich R., Bleuler H., Spark assisted chemical engraving in the light of electrochemistry, Electrochim. Acta 49 (2004) 3997–4003.

    Google Scholar 

  134. Tandon S., Jain V.K., Kumar P., Rajurkar K.P., Investigations into machining of composites, Precis. Eng. 12 (1990) 227–238.

    Google Scholar 

  135. Langen H., Breguet J.M., Bleuler H., Renaud Ph, Masuzawa T., Micro electrochemical discharge machining of glass, Int. J. Electr. Mach. 3 (1998) 65–69.

    Google Scholar 

  136. Crichton I.M., Mcgeough J.A., Studies of the discharge mechanisms in electrochemical arc machining, J. Appl. Electrochem. 15 (1985) 113–119.

    Google Scholar 

  137. Cook N.H., Foote G.B., Jordan P., Kalyani B.N., Experimental studies in electro machining, J. Eng. Ind. 95 (1973) 945–950.

    Google Scholar 

  138. Khairy A.B.E., Mcgeough J.A., Die-sinking by electro erosion-dissolution machining, CIRP Ann. Manuf. Technol. 39 (1990) 191–195.

    Google Scholar 

  139. Didar T.F., Dolatabadi A., Wüthrich R., Characterization and modeling of 2D glass micro-machining by spark-assisted chemical engraving (SACE) with constant velocity, J. Micromech. Micro Eng. 18 (2008) 9.

    Google Scholar 

  140. Jain V.K., Chak S.K., Electrochemical spark trepanning of alumina and quartz, Mach. Sci. Technol. 4 (2000) 277–290.

    Google Scholar 

  141. Furutani K., Maeda H., Machining a glass rod with a lathe-type electro-chemical discharge machine, J. Micromech. Microeng. 18 (2008) 8.

    Google Scholar 

  142. Schöpf M., Beltram I., Boccadoro M., Kramer D., ECDM (Electrochemical discharge machining) a new method for trueing and dressing of metal bonded diamond grinding tools, CIRP Ann. Manuf. Technol. 50 (2001) 125–128.

    Google Scholar 

  143. Peng W.Y., Liao Y.S., Study of electrochemical discharge machining technology for slicing non-conductive brittle materials, J. Mater. Process. Technol. 149 (2004) 363–369.

    Google Scholar 

  144. Solignac D., Sayah A., Constantin S., Freitag Rand M., Giijs M. A., Powder blasting for realization of microchips for bio-analytic applications, Sensors Actuators A 92(2001) 388–93.

    Google Scholar 

  145. Liu C., Chen J., Engel J., Zou J., Wang X., Fan Z., Ryu K., Shaikh K., Bullen D., Polymer micromachining and applications in sensors, microfluidics, and nanotechnology, 226th National Meeting of the American Chemical Society (ACS) 2003 (NewYork, September 11–17).

    Google Scholar 

  146. Mills C. A., Martinez E., Bessueille F., Villanueva G., Bausells J., Samitier J., Errachid A., Production of structures for micro fluidic using polymer imprint techniques, Microelectron. Eng. 78–9(2005) 695–700.

    Google Scholar 

  147. Holger B., Laurie E. L., Polymer micro fluidic devices, Talanta 56(2002) 267–87.

    Google Scholar 

  148. Lai S., Lee L. J., Yu L., Koelling K. W., Madou M. J. Micro-and nano-fabrication of polymer based micro fluidic platforms for bioMEMS applications Proc. Materials Research Society Symp. 729(2002) (U1.7.1-U1.7.11)

    Google Scholar 

  149. Getu H., Ghobeity A., Spelt J. K., Papini M. Abrasive jet micromachining of polymethylmethacrylate, Wear 263(2007) 1008–15.

    Google Scholar 

  150. Getu H., Ghobeity A., Spelt J. K., Papini M., Abrasive jet micromachining of acrylic and polycarbonate polymers at oblique angles of attack, Wear doi:10.1016/j.wear.2008.01.013.

  151. Singh R., Walia R. S., Study the effects of centrifugal force on abrasive flow machining process. International Journal of Research in Mechanical Engineering and Technology 2(2012) 34–39.

    Google Scholar 

  152. Singh R., Walia R. S., Suri N. M., Study of parametric effect on surface roughness improvement for hybrid centrifugal force assisted abrasive flow machining process, International Journal of Latest Research in Science and Technology 1(2012) 198–201.

    Google Scholar 

  153. Nouraei H., Kowsari K., Papini M., Spelt J.K., Operating parameters to minimize feature size in abrasive slurry jet micro-machining, Precision Engineering 44 (2016) 109–123.

    Google Scholar 

  154. Liu Z., Nouraei H., Papini M., Spelt J.K., Abrasive enhanced electrochemical slurry jet micro-machining: Comparative experiments and synergistic effects, Journal of Materials Processing Technology 214 (2014) 1886–1894.

    Google Scholar 

  155. Shukla R., Singh D., Experimentation investigation of abrasive water jet machining parameters using Taguchi and Evolutionary optimization techniques, Swarm and Evolutionary Computation, doi:10.1016/j.swevo.2016.07.002.

  156. Thoe T.B., Aspinwall D.K., Wise M. L.H., Review on Ultrasonic Machining, International Journal of Machine Tools & Manufacture. 38(1998) 239–355.

    Google Scholar 

  157. Yu Z., Rajurkar K.P., Tandon A., Study of 3D Micro-Ultrasonic Machining, Journal of Manufacturing Science and Engineering Vol. 126; 2004.

    Google Scholar 

  158. Markov A.I., Neppiras E., Ultrasonic machining of intractable materials, Iliffe, London, 1966.

    Google Scholar 

  159. Lv Z., Huang C.Z., Zhu H.T, Wang J., Wang Y., Yao P., A research on ultrasonic assisted abrasive water jet polishing of hard-brittle materials, Int. J. Adv. Manuf. Technol. 78 (2015) 1361–1369.

    Google Scholar 

  160. Rhoades L., Abrasive flow machining: a case study, Journal of Material Processing Technology 28 (1991) 107–116.

    Google Scholar 

  161. Davies P.J., Fletcher A.J., The assessment of the rheological characteristics of various polyborosilixane/grit mixtures as utilized in the abrasive flow machining, Proceedings of Institute of Mechanical Engineers 209 (1995) 409–418.

    Google Scholar 

  162. Raju H.P., Narayanasamy K., Srinivasa Y.G., Krishnamurthy R., Characteristics of extrude honed SG iron internal primitives, Journal of Materials Processing Technology 166 (2005) 455–464.

    Google Scholar 

  163. Rajesha S., G Venkatesh., Sharma A.K., Kumar P., Performance study of a natural polymer based media for abrasive flow machining, Indian Journal of Engineering & Materials Sciences 17 (2010) 407–413.

    Google Scholar 

  164. Kumar R., Murtaza Q., Walia R.S., Three Start Helical Abrasive Flow Machining for Ductile Materials, 3rd International Conference on Materials Processing and Characterization 6 (2014) 1884–1890.

    Google Scholar 

  165. Steigerwald J. M., Murarka S. P., Gutmann R. J., Chemical Mechanical Planarization of Microelectronic Materials Wiley, New York, 1997, pp. 1–12.

    Google Scholar 

  166. Mori Y., Yamauchi K., Endo K., Mechanism of atomic removal in elastic emission machining, Precision Engineering 10(1)(1988) 24–28

    Google Scholar 

  167. Hiraoka D., Hamazaki K., Matsumura K., Research on developing a prototype NC EEM machine for machining high-power laser mirrors, Koyo Engineering Journal, 155E(1999) 42–47.

    Google Scholar 

  168. Mori Y., Ikawa N., Okuda T., Yamagata K., Numerically Controlled Elastic Emission Machining; Technology reports of the Osaka University 26(1976) 283–294.

    Google Scholar 

  169. Endo K., Namba H., New machining method for making precise and very smooth mirror surfaces made from Cu and Al alloys for synchrotron radiation optics, Rev Sci ln- strum 60(1989)2.120-2.123.

    Google Scholar 

  170. Chang G.W., Yan B.H., Hsu R.T., Study on cylindrical magnetic abrasive finishing using unbonded magnetic abrasives, Int. J. of Mach. Tool & Manuf 2002; 42: 575–583.

    Google Scholar 

  171. Yan B.H., Chang G.W., Cheng J.T., Hsu R.T., Electrolytic magnetic abrasive finishing, Int J of Mach Tool & Manuf 43(2003) 1355–1365.

    Google Scholar 

  172. Yin S., Shinmura T., Vertical vibration-assisted magnetic abrasive finishing and deburring for magnesium alloy, Int J of Mach Tool & Manuf 44(2004) 1297–1303.

    Google Scholar 

  173. Yamaguchi H., Shinmura T., Sekine M., Uniform Internal Finishing of SUS304 Stainless Steel Bent Tube Using a Magnetic Abrasive Finishing Process, J of Manuf Sci & Eng. 127(2005) 605–611.

    Google Scholar 

  174. Shinmura T., Takazawa K., Hatano E., Study on magnetic abrasive finishing – effects of various types of magnetic abrasives on finishing characteristics, Bull Japan Soc of Prec Eng 21 (1987) 139–141.

    Google Scholar 

  175. Shinmura T., Takazawa K., Hatano E., Matsunaga M., Study on magnetic abrasive finishing, Annals of the CIRP 39(1990) 325–328.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Bhattacharyya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Debnath, S., Kunar, S., Anasane, S.S., Bhattacharyya, B. (2017). Non-traditional Micromachining Processes: Opportunities and Challenges. In: Kibria, G., Bhattacharyya, B., Davim, J. (eds) Non-traditional Micromachining Processes. Materials Forming, Machining and Tribology. Springer, Cham. https://doi.org/10.1007/978-3-319-52009-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52009-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52008-7

  • Online ISBN: 978-3-319-52009-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics