Advertisement

Manipulate

  • Marian Mureşan
Chapter

Abstract

Chapter  6 is devoted to the study of the Manipulate command. In order to show the utility of this command, we present certain introductory examples on the following topics: the main points of a triangle, Euler’s nine points circle, Frenet–Serret trihedron of a helix, and a hyperboloid of one sheet.

References

  1. 1.
    Abell, M.L., Braselton, J.P.: Differential Equations with Mathematica. AP Professional, Boston (1993)Google Scholar
  2. 2.
    Adamchik, V., Wagon, S.: π A 2000-year search changes direction. Math. Educ. Res. 5 (1), 11–19 (1996).{w}ww.cs.cmu.edu/~adamchik/articles/pi/pi.htm
  3. 3.
    Adamchik, V., Wagon, S.: A simple formula for π. Am. Math. Mon. 104 (9), 852–855 (1997)Google Scholar
  4. 4.
    Alexander, R.: Diagonally implicit Runge-Kutta methods for stiff O.D.E’s. SIAM J. Numer. Anal. 14 (6), 1006–1021 (1977)Google Scholar
  5. 5.
    Backhouse, N.: Pancake functions and approximations to π. Math. Gaz. 79, 371–374 (1995). Note 79.36Google Scholar
  6. 6.
    Bailey, D.H., Borwein, P.B., Plouffe, S.: On the rapid computation of various polylogarithmic constants. Math. Comput. 66 (218), 903–913 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Baruah, D.N., Berndt, B.C., Chan, H.H.: Ramanujan’s series for 1∕π: a survey. Am. Math. Mon. 116 (7), 567–587 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bellard, F.: Computation of the n’th digit of π in any base in O(n 2) (1997). fabrice.bellard.free.fr/pi/ Google Scholar
  9. 9.
    Borwein, J.M., Borwein, P.B.: The class three Ramanujan type series for 1∕π. J. Comput. Appl. Math. 45 (1–2), 281–290 (1993)Google Scholar
  10. 10.
    Borwein, J.M., Borwein, P.B., Bailey, D.H.: Ramanujan, modular equations, and approximations to π or how to compute one billion digits of π. Am. Math. Mon. 96 (3), 201–219 (1989)Google Scholar
  11. 11.
    Borwein, J.M., Skerritt, M.P.: An Introduction to Modern Mathematical Computing with Mathematica. Springer Undergraduate Text in Mathematics and Technology. Springer, New York (2012)Google Scholar
  12. 12.
    Brun, V.: Carl Störmer in memoriam. Acta Math. 100 (1–2), I–VII (1958)Google Scholar
  13. 13.
    Bryson, A.E., Ho, Y.C.: Applied Optimal Control: Optimization, Estimation, and Control. Halsted Press, New York (1975)Google Scholar
  14. 14.
    Burns, R.E., Singleton, L.G.: Ascent from the lunar surface. Technical report TN D-1644, NASA, George C. Marshall Space Flight Center, Huntsville (1965)Google Scholar
  15. 15.
    Cesari, L.: Optimization–Theory and Applications. Problems with Ordinary Differential Equations. Applications of Mathematics, vol. 17. Springer, New York (1983)Google Scholar
  16. 16.
    Champion, B.: General Visualization Quick Start. Wolfram Research, Champaign (2013). {w}ww.wolfram.com/training/courses/vis412.html
  17. 17.
    Chudnovsky, D.V., Chudnovsky, G.V.: The computation of classical constants. Proc. Natl. Acad. Sci. USA 86 (21), 8178–8182 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Cloitre, B.: A BBP formula for π 2 in golden base (2003). abcloitre@wanadoo.frGoogle Scholar
  19. 19.
    Dennis Lawrence, J.: A Catalog of Special Plane Curves. Dover, New York (1972)Google Scholar
  20. 20.
    Don, E.: Mathematica. Schaum’s Outlines Series. McGraw Hill, New York (2009)Google Scholar
  21. 21.
    Ebbinghaus, H.D., Peckhaus, V.: Ernst Zermelo. An Approach to His Life and Work. Springer, Berlin/Heidelberg (2007)Google Scholar
  22. 22.
    Elkies, N.D.: On a 4 + b 4 + c 4 = d 4. Math. Comput. 51 (184), 825–835 (1988)Google Scholar
  23. 23.
    Fay, T.H.: The butterfly curve. Am. Math. Mon. 96 (5), 442–443 (1989)CrossRefGoogle Scholar
  24. 24.
    Ferguson, H., Gray, A., Markvorsen, S.: Costa’s minimal surface via Mathematica. Math. Educ. Res. 5 (1), 5–10 (1966)Google Scholar
  25. 25.
    Finch, S.R.: Zermelo’s navigation problem. In: Mathematical Constants II. Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (Forthcoming)Google Scholar
  26. 26.
    Floyd, R.W.: Algorithm 245: treesort. Commun. ACM 7 (12), 701 (1964)CrossRefGoogle Scholar
  27. 27.
    Frye, R.E.: Finding 958004 + 2175194 + 4145604 = 4224814 on the connection machine. In: Proceedings of Supercomputing’88. Science and Applications, vol. 2, pp. 106–116 (1988)Google Scholar
  28. 28.
    Gourevitch, B., Guillera Goyanes, J.: Construction of binomial sums for π and polylogarithmic constants inspired by BBP formula. Appl. Math. E-Notes 7, 237–246 (2007). www.math.nthu.edu.tw/~amen
  29. 29.
    Gradshteyn, S.G., Ryzhik, I.M.: Tables of Integrals, Series, and Products, 7th edn. Elsevier, Amsterdam (2007)zbMATHGoogle Scholar
  30. 30.
    Guillera, J., Zudilin, W.: Ramanujan-type for 1∕π: the art of translation. In: Bruce, D.P., Berndt, C. (eds.) The Legacy of Srinivasa Ramanujan. Lecture Notes Series, vol. 20, pp. 181–195. Ramanujan Mathematical Society (2013). arXiv 1302.0548Google Scholar
  31. 31.
    Hartman, P.: Ordinary Differential Equations, 1st edn. Wiley, Hoboken (1964)zbMATHGoogle Scholar
  32. 32.
    Hastings, C., Mischo, K., Morrison, M.: Hands-On Start to Wolfram Mathematica and Programming with the Wolfram LanguageTM. Wolfram Media, Champaign (2015)Google Scholar
  33. 33.
    Hazrat, R.: Mathematica: A Problem-Centered Approach. Springer Undergraduate Mathematics Series, vol. 53. Springer, London (2010)Google Scholar
  34. 34.
    Hoare, C.A.R.: Algorithm 64: quicksort. Commun. ACM 4 (7), 321 (1961)CrossRefGoogle Scholar
  35. 35.
    Hull, D.G.: Optimal guidance for Lunar ascent. Adv. Astronaut. Sci. 134, 275–285 (2009). Proccedings of the AAS Space Flight Machanics Meeting, SavannachGoogle Scholar
  36. 36.
    Hull, D.G.: Optimal guidance for quasi-planar Lunar ascent. J. Optim. Theory Appl. 151 (2), 353–372 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Hull, D.G., Harris, M.W.: Optimal solutions for quasiplanar ascent over a spherical Moon. J. Guid. Control Dyn. 35 (4), 1218–1224 (2012). doi: 10.2514/1.55443 CrossRefGoogle Scholar
  38. 38.
    Knuth, D.E.: The Art of Computer Programming. Sorting and Searching. Computer Science and Information Processing, vol. 3. Addison-Wesley, Reading (1973)Google Scholar
  39. 39.
    Lander, L.J., Parkin, T.R.: Counterexample to Euler’s conjecture on sums of like powers. Bull. Am. Math. Soc. 72 (6), 1079 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Lawden, D.F.: Analytical Methods of Optimization. Dover Books on Mathematics. Dover, Mineola (2006)zbMATHGoogle Scholar
  41. 41.
    Lucas, S.K.: Integral proofs that 355∕113 > π. Gaz. Aust. Math. Soc. 32 (4), 263–266 (2005)Google Scholar
  42. 42.
    Lucas, S.K.: Integral approximations to π with nonnegative integrands (2007). carma.newcastle.edu.au/jon/Preprints/Papers/By%20Others/more-pi.pdf
  43. 43.
    Mangano, S.: Mathematica Cookbook. O’Reilly, Sebastopol (2010)Google Scholar
  44. 44.
    Manià, B.: Sopra un problema di navigatione di Zermelo. Math. Ann. 113 (1), 584–589 (1937)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    McShane, E.J.: A navigation problem in the calculus of variations. Am. J. Math. 59 (2), 327–334 (1937)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Miele, A.: Flight Mechanics. Theory of Flight Path. Addison-Wesley Series in the Engineering Sciences Space Science and Technology, vol. 1. Addison-Wesley, Reading (1962)Google Scholar
  47. 47.
    Mureşan, M.: Classical Analysis by Mathematica (Forthcoming)Google Scholar
  48. 48.
    Mureşan, M.: A Primer on the Calculus of Variations and Optimal Control. Trajectories Optimization (Forthcoming)Google Scholar
  49. 49.
    Mureşan, M.: On a Runge-Kutta type method. Rev. Anal. Numér. Théorie Approx. 16 (2), 141–147 (1987)MathSciNetzbMATHGoogle Scholar
  50. 50.
    Mureşan, M.: Some computing results of a Runge-Kutta type method. Seminar on Mathematical Analysis Nr. 7, Univ. Babeş-Bolyai, Cluj-Napoca, pp. 101–114 (1987)Google Scholar
  51. 51.
    Mureşan, M.: A semi-explicit Runge-Kutta method. Seminar on Differential Equations Nr. 8, Univ. Babeş-Bolyai, Cluj-Napoca, pp. 65–70 (1988)Google Scholar
  52. 52.
    Mureşan, M.: Qualitative Properties of Differential Equations and Inclusions. Ph.D. thesis, Babeş-Bolyai University, Cluj-Napoca (1996)Google Scholar
  53. 53.
    Mureşan, M.: A Concrete Approach to Classical Analysis. CMS Books in Mathematics. Springer, New York (2009)CrossRefzbMATHGoogle Scholar
  54. 54.
    Mureşan, M.: Instructor Solution Manual, for A Concrete Approach to Classical Analysis. Springer, New York (2012). {w}ww.springer.com/mathematics/analysis/book/978-0-387-78932-3?changeHeader
  55. 55.
    Mureşan, M.: Soft landing on Moon with Mathematica. Math. J. 14 (2012). doi: dx.doi.org/doi:10.3888/tmj.14–16
  56. 56.
    Mureşan, M.: On Zermelo’s navigation problem with Mathematica. J. Appl. Funct. Anal. 9 (3–4), 349–355 (2014)Google Scholar
  57. 57.
    Mureşan, M.: On the maximal orbit transfer problem. Math. J. 17 (2015). doi: dx.doi.org/10.3888/tmj.17–4
  58. 58.
    Palais, R.S.: The visualization of mathematics: towards a mathematical exploratorium. Not. Am. Math. Soc. 46 (6), 647–658 (1999)MathSciNetzbMATHGoogle Scholar
  59. 59.
    Rao, K.S.: Ramanujan and important formulas. In: Nagarajan, K.R., Soundararajan, T. (eds.) Srinivasa Ramanujan: 1887–1920: A Tribute, pp. 32–41. MacMillan India, Madras (1988)Google Scholar
  60. 60.
    Robinson, E.A., Jr.: Man Ray’s human equations. Not. Am. Math. Soc. 62 (10), 1192–1198 (2015)Google Scholar
  61. 61.
    Sedgewick, R.: Implementing Quicksort programs. Commun. ACM 21 (10), 847–857 (1978)CrossRefzbMATHGoogle Scholar
  62. 62.
    Strogatz, S.H.: Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry, and Engineering. Perseus, New York (1994)zbMATHGoogle Scholar
  63. 63.
    Takano, K.: Pi no arctangent relation wo motomete [finding the arctangent relation of π]. Bit 15 (4), 83–91 (1983)Google Scholar
  64. 64.
    Torrence, B., Torrence, E.: The Student’s Introduction to Mathematica . A Handbook for Precalculus, Calculus, and Linear Algebra, 2nd edn. Cambridge University Press, Cambridge, UK (2009)Google Scholar
  65. 65.
    Trott, M.: The Mathematica GuideBook for Graphics. Springer, New York (2004)CrossRefzbMATHGoogle Scholar
  66. 66.
    Trott, M.: The Mathematica GuideBook for Programming. Springer, New York (2004)CrossRefzbMATHGoogle Scholar
  67. 67.
    Trott, M.: The Mathematica GuideBook for Numerics. Springer, New York (2006)CrossRefzbMATHGoogle Scholar
  68. 68.
    Trott, M.: The Mathematica GuideBook for Symbolics. Springer, New York (2006)zbMATHGoogle Scholar
  69. 69.
    Weisstein, W.E.: BBP-Type formula. Technical report, MathWorld-A Wolfram Web Resources. mathworld.wolfram.com/BBP-TypeFormula.html
  70. 70.
    Weisstein, W.E.: Machbin-Like formulas. Technical report, MathWorld-A Wolfram Web Resources. mathworld.wolfram.com/Machin-LikeFormulas.html
  71. 71.
    Weisstein, W.E.: Pi formulas. Technical report, MathWorld-A Wolfram Web Resources. mathworld.wolfram.com/PiFormulas.html
  72. 72.
    Wolfram, S.: The Mathematica Book, 5th edn. Wolfram Media, Champaign (2003)Google Scholar
  73. 73.
    Wolfram, S.: An Elementary Introduction to the Wolfram Language. Wolfram Media, Champaign (2015)Google Scholar
  74. 74.
    Wolfram, S.: Differential Equation Solving with DSOLVE. Wolfram Research, Champaign (2008). Wolfram Mathematica Tutorial Collection. htpps:/reference.wolfram.com/language/tutorial/DSolveOverview.htmlGoogle Scholar
  75. 75.
    Wolfram, S.: Advanced numerical differential equation solving in Mathematica. In: Wolfram Mathematica Tutorial Collection. Wolfram Research, Champaign (2008). htpps:/www.scrib.com/doc/122203558/Advanced-Numerical-Differential-Equation-Solving-in-MathematicaGoogle Scholar
  76. 76.
  77. 77.
  78. 78.
    Zermelo, E.: Über die Navigation in der Luft als Problem der Variationsrechnung. Jahresbericht der deutschen Mathematiker – Vereinigung, Angelegenheiten 39, 44–48 (1930)zbMATHGoogle Scholar
  79. 79.
    Zermelo, E.: Über das Navigationproblem bei ruhender oder veränderlicher Windverteilung. Z. Angew. Math. Mech. 11 (2), 114–124 (1931)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Marian Mureşan
    • 1
  1. 1.Faculty of Mathematics and Computer ScienceBabeş-Bolyai UniversityCluj-NapocaRomania

Personalised recommendations