# Basic Steps to Mathematica

• Marian Mureşan
Chapter

## Abstract

Chapter  is dedicated to a deeper insight into Mathematica. The first section deals with some problems in number theory, symbolic manipulation, and calculus. In number theory, we discuss Pythagorean numbers, Euler’s sum of powers, and a conjecture of Fermat. The second section exhibits some ways to prove symbolic relations such as with binomial coefficients, binomial sums, and Bell numbers. The next section shows how to write the word Mathematica along the sine function. Then a short insight to Riemann ζ function is realized. We show how three real sequences can be studied. After a section on variables, a large section on lists and operations with lists is introduced.

## Keywords

Binomial Coefficient Symbolic Manipulation Complex Conjugate Eigenvalue Fourth Element Binomial Identity
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

1. 1.
Abell, M.L., Braselton, J.P.: Differential Equations with Mathematica. AP Professional, Boston (1993)Google Scholar
2. 2.
Adamchik, V., Wagon, S.: π A 2000-year search changes direction. Math. Educ. Res. 5 (1), 11–19 (1996).{w} ww.cs.cmu.edu/~adamchik/articles/pi/pi.htm
3. 3.
Adamchik, V., Wagon, S.: A simple formula for π. Am. Math. Mon. 104 (9), 852–855 (1997)Google Scholar
4. 4.
Alexander, R.: Diagonally implicit Runge-Kutta methods for stiff O.D.E’s. SIAM J. Numer. Anal. 14 (6), 1006–1021 (1977)Google Scholar
5. 5.
Backhouse, N.: Pancake functions and approximations to π. Math. Gaz. 79, 371–374 (1995). Note 79.36Google Scholar
6. 6.
Bailey, D.H., Borwein, P.B., Plouffe, S.: On the rapid computation of various polylogarithmic constants. Math. Comput. 66 (218), 903–913 (1997)
7. 7.
Baruah, D.N., Berndt, B.C., Chan, H.H.: Ramanujan’s series for 1∕π: a survey. Am. Math. Mon. 116 (7), 567–587 (2009)
8. 8.
Bellard, F.: Computation of the n’th digit of π in any base in O(n 2) (1997). fabrice.bellard.free.fr/pi/ Google Scholar
9. 9.
Borwein, J.M., Borwein, P.B.: The class three Ramanujan type series for 1∕π. J. Comput. Appl. Math. 45 (1–2), 281–290 (1993)Google Scholar
10. 10.
Borwein, J.M., Borwein, P.B., Bailey, D.H.: Ramanujan, modular equations, and approximations to π or how to compute one billion digits of π. Am. Math. Mon. 96 (3), 201–219 (1989)Google Scholar
11. 11.
Borwein, J.M., Skerritt, M.P.: An Introduction to Modern Mathematical Computing with Mathematica. Springer Undergraduate Text in Mathematics and Technology. Springer, New York (2012)Google Scholar
12. 12.
Brun, V.: Carl Störmer in memoriam. Acta Math. 100 (1–2), I–VII (1958)Google Scholar
13. 13.
Bryson, A.E., Ho, Y.C.: Applied Optimal Control: Optimization, Estimation, and Control. Halsted Press, New York (1975)Google Scholar
14. 14.
Burns, R.E., Singleton, L.G.: Ascent from the lunar surface. Technical report TN D-1644, NASA, George C. Marshall Space Flight Center, Huntsville (1965)Google Scholar
15. 15.
Cesari, L.: Optimization–Theory and Applications. Problems with Ordinary Differential Equations. Applications of Mathematics, vol. 17. Springer, New York (1983)Google Scholar
16. 16.
Champion, B.: General Visualization Quick Start. Wolfram Research, Champaign (2013). {w}ww.wolfram.com/training/courses/vis412.html
17. 17.
Chudnovsky, D.V., Chudnovsky, G.V.: The computation of classical constants. Proc. Natl. Acad. Sci. USA 86 (21), 8178–8182 (1989)
18. 18.
Cloitre, B.: A BBP formula for π 2 in golden base (2003). abcloitre@wanadoo.frGoogle Scholar
19. 19.
Dennis Lawrence, J.: A Catalog of Special Plane Curves. Dover, New York (1972)
20. 20.
Don, E.: Mathematica. Schaum’s Outlines Series. McGraw Hill, New York (2009)Google Scholar
21. 21.
Ebbinghaus, H.D., Peckhaus, V.: Ernst Zermelo. An Approach to His Life and Work. Springer, Berlin/Heidelberg (2007)Google Scholar
22. 22.
Elkies, N.D.: On a 4 + b 4 + c 4 = d 4. Math. Comput. 51 (184), 825–835 (1988)
23. 23.
Fay, T.H.: The butterfly curve. Am. Math. Mon. 96 (5), 442–443 (1989)
24. 24.
Ferguson, H., Gray, A., Markvorsen, S.: Costa’s minimal surface via Mathematica. Math. Educ. Res. 5 (1), 5–10 (1966)Google Scholar
25. 25.
Finch, S.R.: Zermelo’s navigation problem. In: Mathematical Constants II. Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (Forthcoming)Google Scholar
26. 26.
Floyd, R.W.: Algorithm 245: treesort. Commun. ACM 7 (12), 701 (1964)
27. 27.
Frye, R.E.: Finding 958004 + 2175194 + 4145604 = 4224814 on the connection machine. In: Proceedings of Supercomputing’88. Science and Applications, vol. 2, pp. 106–116 (1988)Google Scholar
28. 28.
Gourevitch, B., Guillera Goyanes, J.: Construction of binomial sums for π and polylogarithmic constants inspired by BBP formula. Appl. Math. E-Notes 7, 237–246 (2007). www.math.nthu.edu.tw/~amen
29. 29.
Gradshteyn, S.G., Ryzhik, I.M.: Tables of Integrals, Series, and Products, 7th edn. Elsevier, Amsterdam (2007)
30. 30.
Guillera, J., Zudilin, W.: Ramanujan-type for 1∕π: the art of translation. In: Bruce, D.P., Berndt, C. (eds.) The Legacy of Srinivasa Ramanujan. Lecture Notes Series, vol. 20, pp. 181–195. Ramanujan Mathematical Society (2013). arXiv 1302.0548Google Scholar
31. 31.
Hartman, P.: Ordinary Differential Equations, 1st edn. Wiley, Hoboken (1964)
32. 32.
Hastings, C., Mischo, K., Morrison, M.: Hands-On Start to Wolfram Mathematica and Programming with the Wolfram LanguageTM. Wolfram Media, Champaign (2015)Google Scholar
33. 33.
Hazrat, R.: Mathematica: A Problem-Centered Approach. Springer Undergraduate Mathematics Series, vol. 53. Springer, London (2010)Google Scholar
34. 34.
Hoare, C.A.R.: Algorithm 64: quicksort. Commun. ACM 4 (7), 321 (1961)
35. 35.
Hull, D.G.: Optimal guidance for Lunar ascent. Adv. Astronaut. Sci. 134, 275–285 (2009). Proccedings of the AAS Space Flight Machanics Meeting, SavannachGoogle Scholar
36. 36.
Hull, D.G.: Optimal guidance for quasi-planar Lunar ascent. J. Optim. Theory Appl. 151 (2), 353–372 (2011)
37. 37.
Hull, D.G., Harris, M.W.: Optimal solutions for quasiplanar ascent over a spherical Moon. J. Guid. Control Dyn. 35 (4), 1218–1224 (2012). doi: 10.2514/1.55443
38. 38.
Knuth, D.E.: The Art of Computer Programming. Sorting and Searching. Computer Science and Information Processing, vol. 3. Addison-Wesley, Reading (1973)Google Scholar
39. 39.
Lander, L.J., Parkin, T.R.: Counterexample to Euler’s conjecture on sums of like powers. Bull. Am. Math. Soc. 72 (6), 1079 (1966)
40. 40.
Lawden, D.F.: Analytical Methods of Optimization. Dover Books on Mathematics. Dover, Mineola (2006)
41. 41.
Lucas, S.K.: Integral proofs that 355∕113 > π. Gaz. Aust. Math. Soc. 32 (4), 263–266 (2005)Google Scholar
42. 42.
Lucas, S.K.: Integral approximations to π with nonnegative integrands (2007). carma.newcastle.edu.au/jon/Preprints/Papers/By%20Others/more-pi.pdf Google Scholar
43. 43.
Mangano, S.: Mathematica Cookbook. O’Reilly, Sebastopol (2010)Google Scholar
44. 44.
Manià, B.: Sopra un problema di navigatione di Zermelo. Math. Ann. 113 (1), 584–589 (1937)
45. 45.
McShane, E.J.: A navigation problem in the calculus of variations. Am. J. Math. 59 (2), 327–334 (1937)
46. 46.
Miele, A.: Flight Mechanics. Theory of Flight Path. Addison-Wesley Series in the Engineering Sciences Space Science and Technology, vol. 1. Addison-Wesley, Reading (1962)Google Scholar
47. 47.
Mureşan, M.: Classical Analysis by Mathematica (Forthcoming)Google Scholar
48. 48.
Mureşan, M.: A Primer on the Calculus of Variations and Optimal Control. Trajectories Optimization (Forthcoming)Google Scholar
49. 49.
Mureşan, M.: On a Runge-Kutta type method. Rev. Anal. Numér. Théorie Approx. 16 (2), 141–147 (1987)
50. 50.
Mureşan, M.: Some computing results of a Runge-Kutta type method. Seminar on Mathematical Analysis Nr. 7, Univ. Babeş-Bolyai, Cluj-Napoca, pp. 101–114 (1987)Google Scholar
51. 51.
Mureşan, M.: A semi-explicit Runge-Kutta method. Seminar on Differential Equations Nr. 8, Univ. Babeş-Bolyai, Cluj-Napoca, pp. 65–70 (1988)Google Scholar
52. 52.
Mureşan, M.: Qualitative Properties of Differential Equations and Inclusions. Ph.D. thesis, Babeş-Bolyai University, Cluj-Napoca (1996)Google Scholar
53. 53.
Mureşan, M.: A Concrete Approach to Classical Analysis. CMS Books in Mathematics. Springer, New York (2009)
54. 54.
Mureşan, M.: Instructor Solution Manual, for A Concrete Approach to Classical Analysis. Springer, New York (2012).{w}ww.springer.com/mathematics/analysis/book/978-0-387-78932-3?changeHeader
55. 55.
Mureşan, M.: Soft landing on Moon with Mathematica. Math. J. 14 (2012). doi: dx.doi.org/doi:10.3888/tmj.14–16
56. 56.
Mureşan, M.: On Zermelo’s navigation problem with Mathematica. J. Appl. Funct. Anal. 9 (3–4), 349–355 (2014)Google Scholar
57. 57.
Mureşan, M.: On the maximal orbit transfer problem. Math. J. 17 (2015). doi: dx.doi.org/10.3888/tmj.17–4
58. 58.
Palais, R.S.: The visualization of mathematics: towards a mathematical exploratorium. Not. Am. Math. Soc. 46 (6), 647–658 (1999)
59. 59.
Rao, K.S.: Ramanujan and important formulas. In: Nagarajan, K.R., Soundararajan, T. (eds.) Srinivasa Ramanujan: 1887–1920: A Tribute, pp. 32–41. MacMillan India, Madras (1988)Google Scholar
60. 60.
Robinson, E.A., Jr.: Man Ray’s human equations. Not. Am. Math. Soc. 62 (10), 1192–1198 (2015)
61. 61.
Sedgewick, R.: Implementing Quicksort programs. Commun. ACM 21 (10), 847–857 (1978)
62. 62.
Strogatz, S.H.: Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry, and Engineering. Perseus, New York (1994)
63. 63.
Takano, K.: Pi no arctangent relation wo motomete [finding the arctangent relation of π]. Bit 15 (4), 83–91 (1983)Google Scholar
64. 64.
Torrence, B., Torrence, E.: The Student’s Introduction to Mathematica . A Handbook for Precalculus, Calculus, and Linear Algebra, 2nd edn. Cambridge University Press, Cambridge, UK (2009)Google Scholar
65. 65.
Trott, M.: The Mathematica GuideBook for Graphics. Springer, New York (2004)
66. 66.
Trott, M.: The Mathematica GuideBook for Programming. Springer, New York (2004)
67. 67.
Trott, M.: The Mathematica GuideBook for Numerics. Springer, New York (2006)
68. 68.
Trott, M.: The Mathematica GuideBook for Symbolics. Springer, New York (2006)
69. 69.
Weisstein, W.E.: BBP-Type formula. Technical report, MathWorld-A Wolfram Web Resources. mathworld.wolfram.com/BBP-TypeFormula.html
70. 70.
Weisstein, W.E.: Machbin-Like formulas. Technical report, MathWorld-A Wolfram Web Resources. mathworld.wolfram.com/Machin-LikeFormulas.html
71. 71.
Weisstein, W.E.: Pi formulas. Technical report, MathWorld-A Wolfram Web Resources. mathworld.wolfram.com/PiFormulas.html
72. 72.
Wolfram, S.: The Mathematica Book, 5th edn. Wolfram Media, Champaign (2003)Google Scholar
73. 73.
Wolfram, S.: An Elementary Introduction to the Wolfram Language. Wolfram Media, Champaign (2015)Google Scholar
74. 74.
Wolfram, S.: Differential Equation Solving with DSOLVE. Wolfram Research, Champaign (2008). Wolfram Mathematica Tutorial Collection. htpps:/reference.wolfram.com/language/tutorial/DSolveOverview.htmlGoogle Scholar
75. 75.
Wolfram, S.: Advanced numerical differential equation solving in Mathematica. In: Wolfram Mathematica Tutorial Collection. Wolfram Research, Champaign (2008).htpps:/www.scrib.com/doc/122203558/Advanced-Numerical-Differential-Equation-Solving-in-MathematicaGoogle Scholar
76. 76.
77. 77.
78. 78.
Zermelo, E.: Über die Navigation in der Luft als Problem der Variationsrechnung. Jahresbericht der deutschen Mathematiker – Vereinigung, Angelegenheiten 39, 44–48 (1930)
79. 79.
Zermelo, E.: Über das Navigationproblem bei ruhender oder veränderlicher Windverteilung. Z. Angew. Math. Mech. 11 (2), 114–124 (1931)