Advertisement

About Mathematica

  • Marian Mureşan
Chapter

Abstract

The first chapter has an introductory character being only three pages long. It shows the successive evolution of the logos of Mathematica. At the end of the chapter, we suggest the reader a list of references.

Keywords

Mathematical Application Mathematical Logic Arithmetic Operation Formal Language Successive Evolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abell, M.L., Braselton, J.P.: Differential Equations with Mathematica. AP Professional, Boston (1993)Google Scholar
  2. 2.
    Adamchik, V., Wagon, S.: π A 2000-year search changes direction. Math. Educ. Res. 5 (1), 11–19 (1996). {w}ww.cs.cmu.edu/~adamchik/articles/pi/pi.htmGoogle Scholar
  3. 3.
    Adamchik, V., Wagon, S.: A simple formula for π. Am. Math. Mon. 104 (9), 852–855 (1997)Google Scholar
  4. 4.
    Alexander, R.: Diagonally implicit Runge-Kutta methods for stiff O.D.E’s. SIAM J. Numer. Anal. 14 (6), 1006–1021 (1977)Google Scholar
  5. 5.
    Backhouse, N.: Pancake functions and approximations to π. Math. Gaz. 79, 371–374 (1995). Note 79.36Google Scholar
  6. 6.
    Bailey, D.H., Borwein, P.B., Plouffe, S.: On the rapid computation of various polylogarithmic constants. Math. Comput. 66 (218), 903–913 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Baruah, D.N., Berndt, B.C., Chan, H.H.: Ramanujan’s series for 1∕π: a survey. Am. Math. Mon. 116 (7), 567–587 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bellard, F.: Computation of the n’th digit of π in any base in O(n 2) (1997). fabrice.bellard.free.fr/pi/Google Scholar
  9. 9.
    Borwein, J.M., Borwein, P.B.: The class three Ramanujan type series for 1∕π. J. Comput. Appl. Math. 45 (1–2), 281–290 (1993)Google Scholar
  10. 10.
    Borwein, J.M., Borwein, P.B., Bailey, D.H.: Ramanujan, modular equations, and approximations to π or how to compute one billion digits of π. Am. Math. Mon. 96 (3), 201–219 (1989)Google Scholar
  11. 11.
    Borwein, J.M., Skerritt, M.P.: An Introduction to Modern Mathematical Computing with Mathematica. Springer Undergraduate Text in Mathematics and Technology. Springer, New York (2012)Google Scholar
  12. 12.
    Brun, V.: Carl Störmer in memoriam. Acta Math. 100 (1–2), I–VII (1958)Google Scholar
  13. 13.
    Bryson, A.E., Ho, Y.C.: Applied Optimal Control: Optimization, Estimation, and Control. Halsted Press, New York (1975)Google Scholar
  14. 14.
    Burns, R.E., Singleton, L.G.: Ascent from the lunar surface. Technical report TN D-1644, NASA, George C. Marshall Space Flight Center, Huntsville (1965)Google Scholar
  15. 15.
    Cesari, L.: Optimization–Theory and Applications. Problems with Ordinary Differential Equations. Applications of Mathematics, vol. 17. Springer, New York (1983)Google Scholar
  16. 16.
    Champion, B.: General Visualization Quick Start. Wolfram Research, Champaign (2013).{w}ww.wolfram.com/training/courses/vis412.htmlGoogle Scholar
  17. 17.
    Chudnovsky, D.V., Chudnovsky, G.V.: The computation of classical constants. Proc. Natl. Acad. Sci. USA 86 (21), 8178–8182 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Cloitre, B.: A BBP formula for π 2 in golden base (2003). abcloitre@wanadoo.frGoogle Scholar
  19. 19.
    Dennis Lawrence, J.: A Catalog of Special Plane Curves. Dover, New York (1972)Google Scholar
  20. 20.
    Don, E.: Mathematica. Schaum’s Outlines Series. McGraw Hill, New York (2009)Google Scholar
  21. 21.
    Ebbinghaus, H.D., Peckhaus, V.: Ernst Zermelo. An Approach to His Life and Work. Springer, Berlin/Heidelberg (2007)Google Scholar
  22. 22.
    Elkies, N.D.: On a 4 + b 4 + c 4 = d 4. Math. Comput. 51 (184), 825–835 (1988)Google Scholar
  23. 23.
    Fay, T.H.: The butterfly curve. Am. Math. Mon. 96 (5), 442–443 (1989)CrossRefGoogle Scholar
  24. 24.
    Ferguson, H., Gray, A., Markvorsen, S.: Costa’s minimal surface via Mathematica. Math. Educ. Res. 5 (1), 5–10 (1966)Google Scholar
  25. 25.
    Finch, S.R.: Zermelo’s navigation problem. In: Mathematical Constants II. Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (Forthcoming)Google Scholar
  26. 26.
    Floyd, R.W.: Algorithm 245: treesort. Commun. ACM 7 (12), 701 (1964)CrossRefGoogle Scholar
  27. 27.
    Frye, R.E.: Finding 958004 + 2175194 + 4145604 = 4224814 on the connection machine. In: Proceedings of Supercomputing’88. Science and Applications, vol. 2, pp. 106–116 (1988)Google Scholar
  28. 28.
    Gourevitch, B., Guillera Goyanes, J.: Construction of binomial sums for π and polylogarithmic constants inspired by BBP formula. Appl. Math. E-Notes 7, 237–246 (2007). www.math.nthu.edu.tw/~amenGoogle Scholar
  29. 29.
    Gradshteyn, S.G., Ryzhik, I.M.: Tables of Integrals, Series, and Products, 7th edn. Elsevier, Amsterdam (2007)zbMATHGoogle Scholar
  30. 30.
    Guillera, J., Zudilin, W.: Ramanujan-type for 1∕π: the art of translation. In: Bruce, D.P., Berndt, C. (eds.) The Legacy of Srinivasa Ramanujan. Lecture Notes Series, vol. 20, pp. 181–195. Ramanujan Mathematical Society (2013). arXiv 1302.0548Google Scholar
  31. 31.
    Hartman, P.: Ordinary Differential Equations, 1st edn. Wiley, Hoboken (1964)zbMATHGoogle Scholar
  32. 32.
    Hastings, C., Mischo, K., Morrison, M.: Hands-On Start to Wolfram Mathematica and Programming with the Wolfram LanguageTM. Wolfram Media, Champaign (2015)Google Scholar
  33. 33.
    Hazrat, R.: Mathematica: A Problem-Centered Approach. Springer Undergraduate Mathematics Series, vol. 53. Springer, London (2010)Google Scholar
  34. 34.
    Hoare, C.A.R.: Algorithm 64: quicksort. Commun. ACM 4 (7), 321 (1961)CrossRefGoogle Scholar
  35. 35.
    Hull, D.G.: Optimal guidance for Lunar ascent. Adv. Astronaut. Sci. 134, 275–285 (2009). Proccedings of the AAS Space Flight Machanics Meeting, SavannachGoogle Scholar
  36. 36.
    Hull, D.G.: Optimal guidance for quasi-planar Lunar ascent. J. Optim. Theory Appl. 151 (2), 353–372 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Hull, D.G., Harris, M.W.: Optimal solutions for quasiplanar ascent over a spherical Moon. J. Guid. Control Dyn. 35 (4), 1218–1224 (2012). doi: 10.2514/1.55443 CrossRefGoogle Scholar
  38. 38.
    Knuth, D.E.: The Art of Computer Programming. Sorting and Searching. Computer Science and Information Processing, vol. 3. Addison-Wesley, Reading (1973)Google Scholar
  39. 39.
    Lander, L.J., Parkin, T.R.: Counterexample to Euler’s conjecture on sums of like powers. Bull. Am. Math. Soc. 72 (6), 1079 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Lawden, D.F.: Analytical Methods of Optimization. Dover Books on Mathematics. Dover, Mineola (2006)zbMATHGoogle Scholar
  41. 41.
    Lucas, S.K.: Integral proofs that 355∕113 > π. Gaz. Aust. Math. Soc. 32 (4), 263–266 (2005)Google Scholar
  42. 42.
    Lucas, S.K.: Integral approximations to π with nonnegative integrands (2007). carma.newcastle.edu.au/jon/Preprints/Papers/By%20Others/more-pi.pdf Google Scholar
  43. 43.
    Mangano, S.: Mathematica Cookbook. O’Reilly, Sebastopol (2010)Google Scholar
  44. 44.
    Manià, B.: Sopra un problema di navigatione di Zermelo. Math. Ann. 113 (1), 584–589 (1937)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    McShane, E.J.: A navigation problem in the calculus of variations. Am. J. Math. 59 (2), 327–334 (1937)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Miele, A.: Flight Mechanics. Theory of Flight Path. Addison-Wesley Series in the Engineering Sciences Space Science and Technology, vol. 1. Addison-Wesley, Reading (1962)Google Scholar
  47. 47.
    Mureşan, M.: Classical Analysis by Mathematica (Forthcoming)Google Scholar
  48. 48.
    Mureşan, M.: A Primer on the Calculus of Variations and Optimal Control. Trajectories Optimization (Forthcoming)Google Scholar
  49. 49.
    Mureşan, M.: On a Runge-Kutta type method. Rev. Anal. Numér. Théorie Approx. 16 (2), 141–147 (1987)MathSciNetzbMATHGoogle Scholar
  50. 50.
    Mureşan, M.: Some computing results of a Runge-Kutta type method. Seminar on Mathematical Analysis Nr. 7, Univ. Babeş-Bolyai, Cluj-Napoca, pp. 101–114 (1987)Google Scholar
  51. 51.
    Mureşan, M.: A semi-explicit Runge-Kutta method. Seminar on Differential Equations Nr. 8, Univ. Babeş-Bolyai, Cluj-Napoca, pp. 65–70 (1988)Google Scholar
  52. 52.
    Mureşan, M.: Qualitative Properties of Differential Equations and Inclusions. Ph.D. thesis, Babeş-Bolyai University, Cluj-Napoca (1996)Google Scholar
  53. 53.
    Mureşan, M.: A Concrete Approach to Classical Analysis. CMS Books in Mathematics. Springer, New York (2009)CrossRefzbMATHGoogle Scholar
  54. 54.
    Mureşan, M.: Instructor Solution Manual, for A Concrete Approach to Classical Analysis. Springer, New York (2012). {w}ww.springer.com/mathematics/analysis/book/978-0-387-78932-3?changeHeaderGoogle Scholar
  55. 55.
    Mureşan, M.: Soft landing on Moon with Mathematica. Math. J. 14 (2012). doi: dx.doi.org/doi:10.3888/tmj.14–16
  56. 56.
    Mureşan, M.: On Zermelo’s navigation problem with Mathematica. J. Appl. Funct. Anal. 9 (3–4), 349–355 (2014)Google Scholar
  57. 57.
    Mureşan, M.: On the maximal orbit transfer problem. Math. J. 17 (2015). doi: dx.doi.org/10.3888/tmj.17–4
  58. 58.
    Palais, R.S.: The visualization of mathematics: towards a mathematical exploratorium. Not. Am. Math. Soc. 46 (6), 647–658 (1999)MathSciNetzbMATHGoogle Scholar
  59. 59.
    Rao, K.S.: Ramanujan and important formulas. In: Nagarajan, K.R., Soundararajan, T. (eds.) Srinivasa Ramanujan: 1887–1920: A Tribute, pp. 32–41. MacMillan India, Madras (1988)Google Scholar
  60. 60.
    Robinson, E.A., Jr.: Man Ray’s human equations. Not. Am. Math. Soc. 62 (10), 1192–1198 (2015)Google Scholar
  61. 61.
    Sedgewick, R.: Implementing Quicksort programs. Commun. ACM 21 (10), 847–857 (1978)CrossRefzbMATHGoogle Scholar
  62. 62.
    Strogatz, S.H.: Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry, and Engineering. Perseus, New York (1994)zbMATHGoogle Scholar
  63. 63.
    Takano, K.: Pi no arctangent relation wo motomete [finding the arctangent relation of π]. Bit 15 (4), 83–91 (1983)Google Scholar
  64. 64.
    Torrence, B., Torrence, E.: The Student’s Introduction to Mathematica . A Handbook for Precalculus, Calculus, and Linear Algebra, 2nd edn. Cambridge University Press, Cambridge, UK (2009)Google Scholar
  65. 65.
    Trott, M.: The Mathematica GuideBook for Graphics. Springer, New York (2004)CrossRefzbMATHGoogle Scholar
  66. 66.
    Trott, M.: The Mathematica GuideBook for Programming. Springer, New York (2004)CrossRefzbMATHGoogle Scholar
  67. 67.
    Trott, M.: The Mathematica GuideBook for Numerics. Springer, New York (2006)CrossRefzbMATHGoogle Scholar
  68. 68.
    Trott, M.: The Mathematica GuideBook for Symbolics. Springer, New York (2006)zbMATHGoogle Scholar
  69. 69.
    Weisstein, W.E.: BBP-Type formula. Technical report, MathWorld-A Wolfram Web Resources. mathworld.wolfram.com/BBP-TypeFormula.htmlGoogle Scholar
  70. 70.
    Weisstein, W.E.: Machbin-Like formulas. Technical report, MathWorld-A Wolfram Web Resources. mathworld.wolfram.com/Machin-LikeFormulas.htmlGoogle Scholar
  71. 71.
    Weisstein, W.E.: Pi formulas. Technical report, MathWorld-A Wolfram Web Resources. mathworld.wolfram.com/PiFormulas.htmlGoogle Scholar
  72. 72.
    Wolfram, S.: The Mathematica Book, 5th edn. Wolfram Media, Champaign (2003)Google Scholar
  73. 73.
    Wolfram, S.: An Elementary Introduction to the Wolfram Language. Wolfram Media, Champaign (2015)Google Scholar
  74. 74.
    Wolfram, S.: Differential Equation Solving with DSOLVE. Wolfram Research, Champaign (2008). Wolfram Mathematica Tutorial Collection. htpps:/reference.wolfram.com/language/tutorial/DSolveOverview.htmlGoogle Scholar
  75. 75.
    Wolfram, S.: Advanced numerical differential equation solving in Mathematica. In: Wolfram Mathematica Tutorial Collection. Wolfram Research, Champaign (2008). htpps:/www.scrib.com/doc/122203558/Advanced-Numerical-Differential-Equation-Solving-in-MathematicaGoogle Scholar
  76. 76.
  77. 77.
  78. 78.
    Zermelo, E.: Über die Navigation in der Luft als Problem der Variationsrechnung. Jahresbericht der deutschen Mathematiker – Vereinigung, Angelegenheiten 39, 44–48 (1930)zbMATHGoogle Scholar
  79. 79.
    Zermelo, E.: Über das Navigationproblem bei ruhender oder veränderlicher Windverteilung. Z. Angew. Math. Mech. 11 (2), 114–124 (1931)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Marian Mureşan
    • 1
  1. 1.Faculty of Mathematics and Computer ScienceBabeş-Bolyai UniversityCluj-NapocaRomania

Personalised recommendations