Predictive Assessment of Response Time for Road Traffic Video Surveillance Systems: The Case of Centralized and Distributed Systems

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10036)

Abstract

In this paper, we propose mathematical models for predictive assessment of response times of road traffic video surveillance systems. Their performances depend highly on the ability to perceive mobiles within a certain radius of networked sensors, then distinguish their potential trajectory for further decision making. Most QoS measurements and evaluations used within actual literature are hardware based, and do not consider the influence of the technical architecture. We therefore proposed a process based decomposition of video surveillance systems to obtain functions approximating each ones time consumption. The integration of these components guided us to generic mathematical models validated through experimentations. The comparison between them shows a considerably lower response time for a distributed architecture over a centralized.

Keywords

Data Transmission Mobile Monitoring Forecasting Perception Distributed learning 

References

  1. 1.
    Gouaillier, V., Fleurant, A.E.: Intelligent video surveillance: promises and challenges. Technological and Commercial Intelligence Report (2009)Google Scholar
  2. 2.
    Krausz, B., Herpers, R.: MetroSurv: detecting events in subway stations. Multimedia Tools Appl. 50(1), 123–147 (2010)CrossRefGoogle Scholar
  3. 3.
    Sicre, R., Nicolas, H.: Human behaviour analysis and event recognition at a point of sale. In: 2010 Fourth Pacific-Rim Symposium on Image and Video Technology (PSIVT), pp. 127–132. IEEE (2010)Google Scholar
  4. 4.
    Karaman, S., Benois-Pineau, J., Mégret, R., Dovgalecs, V., Dartigues, J.F., Gaëstel, Y.: Human daily activities indexing in videos from wearable cameras for monitoring of patients with dementia diseases. In: 2010 20th International Conference on Pattern Recognition (ICPR), pp. 4113–4116. IEEE (2010)Google Scholar
  5. 5.
    Foroughi, H., Aski, B.S., Pourreza, H.: Intelligent video surveillance for monitoring fall detection of elderly in home environments. In: 11th International Conference on Computer and Information Technology, 2008. ICCIT 2008, pp. 219–224. IEEE (2008)Google Scholar
  6. 6.
    Kastrinaki, V., Zervakis, M., Kalaitzakis, K.: A survey of video processing techniques for traffic applications. Image Vision Comput. 21(4), 359–381 (2003)CrossRefGoogle Scholar
  7. 7.
    Nasir, M., Lim, C.P., Nahavandi, S., Creighton, D.: Prediction of pedestrians routes within a built environment in normal conditions. Expert Syst. Appl. 41(10), 4975–4988 (2014)CrossRefGoogle Scholar
  8. 8.
    Yu, B., Lam, W.H.K., Tam, M.L.: Bus arrival time prediction at bus stop with multiple routes. Transp. Res. Part C. Emerg. Technol. 19(6), 1157–1170 (2011)CrossRefGoogle Scholar
  9. 9.
    Chen, L., Lv, M., Ye, Q., Chen, G., Woodward, J.: A system for destination and future route prediction based on trajectory mining. Pervasive Mob. Comput. 6(6), 657–676 (2010)CrossRefGoogle Scholar
  10. 10.
    Chen, L., Lv, M., Chen, G.: A system for destination and future route prediction based on trajectory mining. Pervasive Mob. Comput. 6(6), 657–676 (2010)CrossRefGoogle Scholar
  11. 11.
    Shi, Y., Lichman, S.: Smart cameras: a review. In: Interfaces, Machines And Graphical Environments (IMAGEN) National Information and Communications Technology Australia (NICTA). Australian Technology Park, Bay 15 Locomotive Workshop Eveleigh, NSW 1430, Australia Google Scholar
  12. 12.
    Developing Traffic Signal Control Systems Using the National ITS Architecture, Mitretek Systems 600 Maryland Avenue SW, Suite 755 Washington, DC 20024 TransCore, Inc. 251 Park Avenue South, 14th Floor New York, NY 10010 (See Acknowledgments), Report Date: February 1998Google Scholar
  13. 13.
    Chen, L., Lv, M., Chen, G.: A system for destination and future route prediction based on trajectory mining, College of Computer Science, Zhejiang University, Hangzhou 310027, PR China Google Scholar
  14. 14.
    Wafi, Z.N.K., Ahmad, R.B., Paulraj, M.P.: Wireless cameras network for intelligent traffic surveillance system. In: Proceedings of the International Conference on Man-Machine Systems (ICoMMS), BatuFerringhi, Penang, Malaysia, 11–13 October 2009 Google Scholar
  15. 15.
    Brulin, M.: Analyse sémantique d’un trac routier dans un contexte de vidéo-surveillance, THÈSE présentée à L’UNIVERSITÉ BORDEAUX I’ÉCOLE DOCTORALE DE MATHÉMATIQUES ET INFORMATIQUE, Soutenue le, 25 octobre 2012Google Scholar
  16. 16.
    Ohn-Bar, E., Tawari, A., Martin, S., Trivedi, M.M.: On surveillance for safety critical events: in-vehicle video networks for predictive driver assistance systems. Comput. Vis. Image Underst. Laboratory for Intelligent and Safe Automobiles (LISA), University of California, San Diego, CA 92093, USAGoogle Scholar
  17. 17.
    Wyatt, K.D., Mandrekar, J., Wong-Kisiel, L., Nickels, K., Wirrell, E.: Predictors of recording an event during prolonged inpatient video electroencephalogram monitoring in children. Pediatr. Neurol. 50, 458–463 (2014). Elsevier Inc.CrossRefGoogle Scholar
  18. 18.
    Ohn-Bar, E., Tawari, A., Martin, S., Trivedi, M.M.: On surveillance for safety critical events: in-vehicle video networks for predictive driver assistance systems. Laboratory for Intelligent and Safe Automobiles (LISA), University of California, San Diego, CA 92093, USAGoogle Scholar
  19. 19.
    Sánchez-Oro, J., Fernández-López, D., Cabido, R., Montemayor, A.S., Pantrigo, J.J.: Radar-based road-traffic monitoring in urban environments, Departamento de Ciencias de la Computación, Universidad Rey Juan Carlos, c/ Tulipán s/n, 28933 Móstoles-Madrid, SpainGoogle Scholar
  20. 20.
    Castro, J.L., Delgado, M., Medina, J., Ruiz-Lozano, M.D.: An expert fuzzy system for predicting object collisions. Its application for avoiding pedestrian accidents School of Computer Science, University of Granada, Department of Computer Science and Artificial Intelligent, C/Periodista Daniel Saucedo Aranda s/n, E-18071 Granada, SpainGoogle Scholar
  21. 21.
    Alvarez-Garcia, J.A., Ortega, J.A., Gonzalez-Abril, L., Velasco, F.: Trip destination prediction based on past GPS log using a hidden Markov model, Computer Languages and Systems Dept., University of Seville, 41012 Seville, Spain, Applied Economics I Dept., University of Seville, 41018 Seville, SpainGoogle Scholar
  22. 22.
    Sodas, T., Le Certen, G., Le Pichon, J.P., Mabo, P.: Approche mbthodologique pour une architecture de monitoring intelligent ,Laboratoire de traitement du signal et de l’image, université de Rennes I, IUT GEII de Rennes, 3, rue du Clos-Courtel, BP 90422, 3.5704 Rennes cedex, France ; 2dkpartement des maladies cardiovasculaires, CHRU de Rennes, 2, rue le Guillou, 35000 Rennes, FranceGoogle Scholar
  23. 23.
    Li, Y., Wang, C., You, X., Chen, H., She, W.: Delay and throughput performance of IEEE 802.16 WiMax Mesh Networks. IET Commun. 6(1), 107 (2012)CrossRefGoogle Scholar
  24. 24.
    Jun, J., Peddabachagari, P., Sichitiu, M.: Theoretical maximum throughput of IEEE 802.11 and its applications. In: 2nd IEEE International Symposium on Network Computing and Applications (NCA), Cambridge, MA, USA, pp. 249–256, 18 Apr 2003Google Scholar
  25. 25.
    Alabed, R.A., Mohammed, M.S.: Optimization and improving throughput on WiMAX mobility. Int. J. Eng. Innovative Technol. (IJEIT) 3(1), 6–8 (2013)Google Scholar
  26. 26.
    Mahasukhon, P., Sharif, H., Hempel, M., Zhou, T., Ma, T.: Distance and throughput measurements in mobile WiMAX test bed. In: The 2010 Military Communication Conference, San Jose, CA, pp. 154–159, October 2010Google Scholar
  27. 27.
    Gumaidah, B.F., Soliman, H.H.: WiMAX network performance improvement through the optimal use of available bandwidth by adaptive selective voice coding. Int. J. Mod. Eng. Sci. 2(1), 1–16 (2013)Google Scholar
  28. 28.
    El Kafhali, S., El Bouchti, A., Hanini, M., Haqiq, A.: Performance analysis for bandwidth allocation in IEEE 802.16 broadband wireless networks using Bmap queueing. Int. J. Wirel. Mob. Netw. (IJWMN) 4(1) (2012) Google Scholar
  29. 29.
    Yousaf, F.Z., Daniel, K., Wietfeld, C.: Analysing the throughput and QoS performance of WiMAX link in an urban environment. http://cdn.intechopen.com/pdfs/9477/InTech_Analyzing_the_throughput_and_qos_performance_of_wimax_link_in_an_urban_environment.pdf. Accessed 12 June 2014
  30. 30.
    Lubobyaa, S.C., Dlodlo, M.E., De Jager, G., Zulu, A.: Throughput characteristics of WiMAX video surveillance systems. In: International Conference on Advanced Computing Technologies and Applications (ICACTA-2015) (2015)Google Scholar
  31. 31.
    Velastin, S.A., Remagnino, P.: Intelligent distributed video surveillance systems. The Institution of Electrical Engineers (IEEE) (2005)Google Scholar
  32. 32.
    Detmold, H., van den Hengel, A., Dick, A., Falkner, K., Munro, D.S., Morrison, R.: Middleware for distributed video surveillance. IEEE Distrib. Syst. Online 9(2), 1–11 (2008)CrossRefGoogle Scholar
  33. 33.
    Tian, Y., Brown, L., Hampapur, A., Lu, M., Senior, A., Shu, C.: IBM smart surveillance system (S3): event based video surveillance system with an open and extensible framework. Mach. Vis. Appl. 19(5), 315–327 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Laboratoire d’Informatique et de Réseaux Télécoms (LIRT), Département Génie InformatiqueÉcole Supérieure Polytechnique de Dakar (ESP/UCAD)DakarSenegal

Personalised recommendations