Accurate Part-of-Speech Tagging via Conditional Random Field

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10036)

Abstract

POS tagging (i.e. part-of-speech tagging) is an important component of syntactic parsing in the field of natural language processing. While CRF (i.e. conditional random field) is a class of statistical modelling method often applied in pattern recognition and machine learning, where it is used for structured prediction. As POS tagging can be considered as a structured prediction task to some extent, so in this paper, we proposed to utilize the inherent advantages of CRF, and apply it to POS tagging task to get more accurate. The subsequent experiments are introduced to validate our proposed method.

Keywords

POS tagging CRF Part-of-Speech Conditional random field Accurate, prediction 

References

  1. 1.
    Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: Proceedings of the 18th International Conference on Machine Learning (ICML), pp. 282–289. MIT Press (2001)Google Scholar
  2. 2.
    Gross, S.S., Russakovsky, O., Do, C.B., Batzoglou, S.: Training conditional random fields for maximum labelwise accuracy. In: Proceedings of the Advances in Neural Information Processing Systems (NIPS), pp. 529–536. MIT Press (2006)Google Scholar
  3. 3.
    Zhong, P., Wang, R.: Learning sparse CRFs for feature selection and classification of hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 46(12), 4186–4197 (2008)CrossRefGoogle Scholar
  4. 4.
    Sutton, C., McCallum, A.: An introduction to conditional random fields. Mach. Learn. 4(4), 267–373 (2011)CrossRefMATHGoogle Scholar
  5. 5.
    Wang, L., Sun, Q., Wang, S., Ma, Y., Xu, J., Li, J.: Web service QoS prediction approach in mobile internet environments. In: Proceedings of the IEEE International Conference on Data Mining Workshop (ICDM), pp. 1239–1241. IEEE (2016)Google Scholar
  6. 6.
    Xu, J., Wang, S., Zhou, A., Yang, F.: Machine status prediction for dynamic and heterogenous cloud environment. In: Proceedings of the IEEE International Conference on Cluster Computing (CLUSTER), pp. 136–137. IEEE (2016)Google Scholar
  7. 7.
    Ding, C., Zhang, L.: Double adjacency graphs-based discriminant neighborhood embedding. Pattern Recogn. 48(5), 1734–1742 (2015)CrossRefMATHGoogle Scholar
  8. 8.
    Wang, S., Zheng, Z., Zhengping, W., Yang, F.: Context-aware mobile service adaptation via a co-evolution eXtended classifier system in mobile network environments. Mob. Inform. Syst. 10(2), 197–215 (2014)CrossRefGoogle Scholar
  9. 9.
    Liu, Z., Wang, S., Sun, Q., Zou, H., Yang, F.: Cost-aware cloud service request scheduling for SaaS providers. Comput. J. 57(2), 291–301 (2014)CrossRefGoogle Scholar
  10. 10.
    Wang, S., Zhu, X., Yang, F.: Efficient QoS management for QoS-aware web service composition. Int. J. Web Grid Serv. 10(1), 1–23 (2014)CrossRefGoogle Scholar
  11. 11.
    Sha, F., Pereira, F.: Shallow parsing with conditional random fields. In: Proceedings of the Association for Computational Linguistics on Human Language Technology, pp. 134–141. Association for Computational Linguistics (2003)Google Scholar
  12. 12.
    Wang, S., Zhou, A., Hsu, C., Xiao, X., Yang, F.: Provision of data-intensive services through energy- and QoS-aware virtual machine placement in national cloud data centers. IEEE Trans. Emerg. Top. Comput. 2(4), 290–300 (2016)CrossRefGoogle Scholar
  13. 13.
    Gupta, R.: Conditional random fields. In Unpublished report, IIT Bombay, pp. 1–24 (2006)Google Scholar
  14. 14.
    Zhou, A., Wang, S., Li, J., Sun, Q., Yang, F.: Optimal mobile device selection for mobile cloud service providing. J. Supercomput. 8(72), 3222–3235 (2016)CrossRefGoogle Scholar
  15. 15.
    Wang, S., Sun, L., Sun, Q., Wei, J., Yang, F.: Reputation measurement of cloud services based on unstable feedback ratings. Int. J. Web Grid Serv. 11(4), 362–376 (2015)CrossRefGoogle Scholar
  16. 16.
    Xu, J., Wang, S., Su, S.: Latent interest and topic mining on user-item bipartite networks. In: Proceedings of the IEEE International Conference on Services Computing (SCC), pp. 778–781 (2016)Google Scholar
  17. 17.
    Klinger, R., Tomanek, K.: Classical probabilistic models and conditional random fields. J. Mol. Evol. 48(5), 532–543 (2013)Google Scholar
  18. 18.
    Sastry, G.M.R., Chaudhuri, S., Reddy, P.N.: An HMM based part-of-speech tagger and statistical chunker for 3 Indian languages. In: Proceedings of the Proceedings of the IJCAI Workshop on Shallow Parsing for South Asian Languages, pp. 29–32. Morgan Kaufmann (2007)Google Scholar
  19. 19.
    Pammi, S.C., Prahallad, K.: POS tagging and chunking using decision forests. In: Proceedings of the IJCAI Workshop on Shallow Parsing for South Asian Languages, pp. 33–36. Morgan Kaufmann (2007)Google Scholar
  20. 20.
    Dandapat, S.: Part of speech tagging and chunking with maximum entropy model. In: Proceedings of the IJCAI Workshop on Shallow Parsing for South Asian Languages, pp. 136–137. Morgan Kaufmann (2007)Google Scholar
  21. 21.
    Freitag, D., McCallum, A.: Information extraction with HMM structures learned by stochastic optimization. In: Proceedings of the 26th Innovative Applications of Artificial Intelligence (IAAI), pp. 584–589. AAAI (2000)Google Scholar
  22. 22.
    Malouf, R.: A comparison of algorithms for maximum entropy parameter estimation. In: Proceedings of the 6th Conference on Natural Language Learning, pp. 1–7 (2002)Google Scholar
  23. 23.
    Keskin, C., Kıraç, F., Kara, Y.E., Akarun, L.: Hand pose estimation and hand shape classification using multi-layered randomized decision forests. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 852–863. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33783-3_61 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Nanjing Technician CollegeNanjingChina
  2. 2.Institute of Computing Technology of the Chinese Academy of SciencesBeijingChina

Personalised recommendations