Skip to main content

Finding Largest Common Substructures of Molecules in Quadratic Time

  • Conference paper
  • First Online:
SOFSEM 2017: Theory and Practice of Computer Science (SOFSEM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10139))

Abstract

Finding the common structural features of two molecules is a fundamental task in cheminformatics. Most drugs are small molecules, which can naturally be interpreted as graphs. Hence, the task is formalized as maximum common subgraph problem. Albeit the vast majority of molecules yields outerplanar graphs this problem remains \(\mathsf{NP}\)-hard.

We consider a variation of the problem of high practical relevance, where the rings of molecules must not be broken, i.e., the block and bridge structure of the input graphs must be retained by the common subgraph. We present an algorithm for finding a maximum common connected induced subgraph of two given outerplanar graphs subject to this constraint. Our approach runs in time \(\mathcal {O}(\varDelta n^2)\) in outerplanar graphs on n vertices with maximum degree \(\varDelta \). This leads to a quadratic time complexity in molecular graphs, which have bounded degree. The experimental comparison on synthetic and real-world datasets shows that our approach is highly efficient in practice and outperforms comparable state-of-the-art algorithms.

This work was supported by the German Research Foundation (DFG), priority programme “Algorithms for Big Data” (SPP 1736).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We are grateful to Leander Schietgat for providing the implementation used in [13].

  2. 2.

    NCI Open Database, GI50, http://cactus.nci.nih.gov.

References

  1. Akutsu, T.: A polynomial time algorithm for finding a largest common subgraph of almost trees of bounded degree. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E76–A(9), 1488–1493 (1993)

    Google Scholar 

  2. Akutsu, T., Tamura, T.: A polynomial-time algorithm for computing the maximum common connected edge subgraph of outerplanar graphs of bounded degree. Algorithms 6(1), 119–135 (2013)

    Article  MathSciNet  Google Scholar 

  3. Droschinsky, A., Kriege, N., Mutzel, P.: Faster algorithms for the maximum common subtree isomorphism problem. MFCS 2016. LIPIcs, 58, 34:1–34:14 (2016). arXiv:1602.07210

  4. Droschinsky, A., Kriege, N., Mutzel, P.: Finding largest common substructures of molecules in quadratic time (2016). CoRR arXiv:1610.08739

  5. Ehrlich, H.C., Rarey, M.: Maximum common subgraph isomorphism algorithms and their applications in molecular science: a review. Wiley Interdiscip. Rev. Comput. Mol. Sci. 1(1), 68–79 (2011)

    Article  Google Scholar 

  6. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, New York (1979)

    MATH  Google Scholar 

  7. Kriege, N., Kurpicz, F., Mutzel, P.: On maximum common subgraph problems in series-parallel graphs. In: Kratochvíl, J., Miller, M., Froncek, D. (eds.) IWOCA 2014. LNCS, vol. 8986, pp. 200–212. Springer, Heidelberg (2015). doi:10.1007/978-3-319-19315-1_18

    Chapter  Google Scholar 

  8. Kriege, N., Mutzel, P.: Finding maximum common biconnected subgraphs in series-parallel graphs. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014. LNCS, vol. 8635, pp. 505–516. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44465-8_43

    Google Scholar 

  9. Lingas, A.: Subgraph isomorphism for biconnected outerplanar graphs in cubic time. Theor. Comput. Sci. 63(3), 295–302 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. Matula, D.W.: Subtree isomorphism in \(O(n^{5/2})\). In: Alspach, B., P.H., Miller, D. (eds.) Algorithmic Aspects of Combinatorics, Annals of Discrete Mathematics, vol. 2, pp. 91–106. Elsevier (1978)

    Google Scholar 

  11. Nicholson, V., Tsai, C.C., Johnson, M., Naim, M.: A subgraph isomorphism theorem for molecular graphs. In: Graph Theory and Topology in Chemistry. Studies in Physical and Theoretical Chemistry, no. 51, pp. 226–230. Elsevier (1987)

    Google Scholar 

  12. Raymond, J.W., Willett, P.: Maximum common subgraph isomorphism algorithms for the matching of chemical structures. J. Comput. Aided Mol. Des. 16(7), 521–533 (2002)

    Article  Google Scholar 

  13. Schietgat, L., Ramon, J., Bruynooghe, M.: A polynomial-time maximum common subgraph algorithm for outerplanar graphs and its application to chemoinformatics. Ann. Math. Artif. Intell. 69(4), 343–376 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sysło, M.M.: The subgraph isomorphism problem for outerplanar graphs. Theor. Comput. Sci. 17(1), 91–97 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  15. Yamaguchi, A., Aoki, K.F., Mamitsuka, H.: Finding the maximum common subgraph of a partial \(k\)-tree and a graph with a polynomially bounded number of spanning trees. Inf. Process. Lett. 92(2), 57–63 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils Kriege .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Droschinsky, A., Kriege, N., Mutzel, P. (2017). Finding Largest Common Substructures of Molecules in Quadratic Time. In: Steffen, B., Baier, C., van den Brand, M., Eder, J., Hinchey, M., Margaria, T. (eds) SOFSEM 2017: Theory and Practice of Computer Science. SOFSEM 2017. Lecture Notes in Computer Science(), vol 10139. Springer, Cham. https://doi.org/10.1007/978-3-319-51963-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51963-0_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51962-3

  • Online ISBN: 978-3-319-51963-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics